
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
FlexCard 

FCBASE API Documentation 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 
 

 

Created by STAR ELECTRONICS GmbH & Co. KG   

Date created 2021-10-05 Date modified  2021-10-05 Page 2 of 250 
 

3-
00

0
9-

0
S

01
-D

0
3_

A
P

I 
D

oc
um

en
ta

ti
on

_D
2

V
5

-F
.d

oc
x 

 

Contact Information 

STAR ELECTRONICS GmbH & Co. KG 
A Company of the STAR COOPERATION Group 
Jahnstraße 86 
73037 Göppingen 
Phone: +49 (0)7031 6288-5656 
Phone: +49 (0)7031 6288-5330 (Support) 
 
Sales: sales-ee@star-cooperation.com 
Support: support-ee@star-cooperation.com 
www.star-cooperation.com/ee-solutions 

Company Data 

STAR ELECTRONICS GmbH & Co. KG, registered offices: Göppingen, register court Ulm, HRA 721096 
Partner liable to unlimited extent: STAR ELECTRONICS Verwaltungs-GmbH, registered offices: Göppingen, register 
court Ulm, HRB 722565 
Represented by the executive board: Rolf Wittig, Henning Lange 

Copyright Notice 

 2021 STAR ELECTRONICS GmbH & Co. KG. All Rights Reserved. 

No part of this document may be reproduced in any form (photocopy, microfilm or another procedure) without 
prior written consent from STAR ELECTRONICS GmbH & Co. KG. 

Trademarks 

Any trademarks used in this document are the property of their respective owners. 
 

mailto:sales-ee@star-cooperation.com
mailto:support-ee@star-cooperation.com


 
 
 

 

Created by STAR ELECTRONICS GmbH & Co. KG   

Date created 2021-10-05 Date modified  2021-10-05 Page 3 of 250 
 

3-
00

0
9-

0
S

01
-D

0
3_

A
P

I 
D

oc
um

en
ta

ti
on

_D
2

V
5

-F
.d

oc
x 

 

Disclaimer 

The information contained in this document does not affect or change General Terms and Conditions of STAR 
ELECTRONICS GmbH & Co. KG. STAR ELECTRONICS GmbH & Co. KG does not guarantee the completeness and 
accuracy of the content of this document and assumes no responsibility for any errors which may appear in this 
document or due to this document. The content of this document or the associated products are subject to 
change without notice at any time. 

Based on currently state of arts and science it is impossible to develop software that is bug-free in all 
applications. Therefore, the product is only allowed to be used in the sense of the product use case described 
herein. 

STAR ELECTRONICS GmbH & Co. KG makes no warranty express or implied, as to this document or the 
information content, materials or products for any particular purpose, nor does STAR ELECTRONICS GmbH & Co. 
KG assume any liability arising out of the application or use of this product, and disclaims all liabilities, including 
without limitation resulting damages, as permissible by applicable law. 

All operating parameters which are provided in this document can vary in different applications or over time. The 
herein described product solely is allowed to be used as described in chapter “Intended use”. 

Without limiting the rights under copyright, no part of this document may be reproduced, stored in or introduced 
into a retrieval system, or transmitted in any form or by any means (electronic, mechanical, photocopying, 
recording, or otherwise), or for any purpose, without the express written consent of STAR ELECTRONICS GmbH & 
Co. KG. 

STAR ELECTRONICS GmbH & Co. KG may have patents, patent applications, trademarks, copyrights, or other 
intellectual property rights covering subject matter in this document. Except as expressly stated in a written 
license agreement from STAR ELECTRONICS GmbH & Co. KG the furnishing of this document does not give you 
any license to these patents, trademarks, copyrights, or other intellectual property. 

Any semiconductor devices have an inherent chance of failure. You have to protect against injury, damage or loss 
from such failures by incorporating safety design measures into your facility and equipment such as redundancy, 
fire protection, and prevention of over-current levels and other abnormal operating conditions. 
The safety and handling instructions in this document have to be followed strictly. 

Revision History 

Version Date Description 
D1V0-F 06-Mar-2006 Initial release. 
D1V1-F 02-Nov-2006 API functions added and updated. Multicard usage. 
D1V2-F 02-May-2007 New API functions added and updated. PMC and XENOMAI usage. 
D1V3-F 10-May-2007 Corrected description and changed Xenomai usage. 
D1V4-F 21-Jun-2007 VxWorks API functions added. 
D1V5-F 30-Aug-2007 PMC, VxWorks and Linux functions changed and added. 
D1V6-F 02-Dec-2007 FlexCard Cyclone II (SE) support self startup/synchronization. 
D1V7-F 28-Jan-2008 Support of CC Timer, API functions added and updated. 
D1V8-F 25-Feb-2008 VxWorks chapter updated. 
D1V9-F 11-Jul-2008 FlexCard Cyclone II (SE) support CAN. New API functions added. 
D1V10-F 29-Oct-2008 FlexCard PMC/PCI support CAN. New FlexRay API functions added. 
D1V11-F 27-Feb-2009 FlexCard PMC-II support and new API functions added. 
D1V12-F 16-Apr-2009 Corrected description. Linux driver supports FlexCard PMC-II. 

D1V13-F 10-Jul-2009 
Xenomai driver supports FlexCard PMC-II. Windows driver is compatible to DMA 
Firmwares. Added extended message buffer configurations. Functions for 
FlexCard PMC-II firmware added. 

D1V14-F 11-Dec-2009 Windows driver supports FlexCard USB-M. Redesigned API documentation. Added 
API functions for time stamp configuration. 

D1V15-F 28-May-2010 Added CAN transmit FIFO feature. 



 
 
 

 

Created by STAR ELECTRONICS GmbH & Co. KG   

Date created 2021-10-05 Date modified  2021-10-05 Page 4 of 250 
 

3-
00

0
9-

0
S

01
-D

0
3_

A
P

I 
D

oc
um

en
ta

ti
on

_D
2

V
5

-F
.d

oc
x 

 

Version Date Description 
D1V16-F 06-Oct-2010 Updated description. 
D1V17-F 19-May-2011 Updated VxWorks description. 
D1V18-F 06-Jul-2012 Windows 64 bit release. 
D1V19-F 12-Sep-2013 Linux S6V5 release. 
D2V0-F 16-Nov-2015 Layout adapted to STAR ELECTRONICS GmbH & Co. KG. Replaced product names. 

D2V1b-F 22-Jun-2016 Added CAN-FD support. 
Updated Reference to Bosch ERay User Manual. 

D2V2-F 25-Jan-2017 Update for Xenomai S6V5 release. 
D2V3-F 10-Dec-2018 Linux 64 bit S6V6 release. 
D2V4-4 30-Jul-2019 Preliminary: Support for FlexCard PXIe3 and FlexCard PCIe3 added. 
D2V4-9 04-Nov-2019 Preliminary: Updated description for FlexCard PXIe3 and FlexCard PCIe3. 
D2V4-14 07-Feb-2020 Preliminary: Extended description for Ethernet. 
D2V4-19 17-Mar-2020 Preliminary: Added HwCom Devices and command “SetGlobalConfig” 

D2V4-F 10-Dec-2020 

Release for fcBase API S6V7 
Added API support for FlexDevice family 
Removed driver support for Windows 7 x86 and x64. 
Removed driver support for Windows 10 x86 (the library still supports x86 and 
x64 applications) 

D2V5-F 05-Oct-2021 Release for fcBase API S6V8 

Related Hardware / Software Versions 

Product Reference No. Version 
(Major and Minor) 

Remarks 

FlexCard Cyclone II 
Firmware 

3-0009-0C04 S6V4 Current version 

FlexCard Cyclone II SE 
Firmware 

3-0009-0C05 S6V4 Current version 

FlexCard PMC Firmware 3-0033-0B01 S6V4 Current version 
FlexCard PMC-II 
Firmware Windows 

3-0055-0C01 S6V6 (6.5.0.33) Current version 

FlexCard PMC-II 
Firmware Linux 

3-0055-0C01 S6V5 Current version 

FlexCard PMC-II 
Firmware Xenomai 

3-0055-0C01 S6V5 Current version 

FlexCard USB-M 
Firmware 

3-0058-0B01 S6V4 Current version 

FlexCard Cyclone II 
Hardware 

3-0009-0A04 H1V1 Initial version 

FlexCard Cyclone II SE 
Hardware 

3-0009-0A05 H1V1 Initial version 

FlexCard PMC Hardware 3-0033-0A01 H1V0 Initial version 
FlexCard PMC-II 
Hardware 

3-0055-0A01 H1V1 Initial version 

FlexCard USB-M 
Hardware 

3-0058-0A01 H1V2 Initial version 

FlexCard PXIe3 
Hardware 

3-0094-0B01 50 Support for this hardware is 
preliminary 

FlexCard PCIe3 
Hardware 

3-0095-0B01 20 Support for this hardware is 
preliminary 



 
 
 

 

Created by STAR ELECTRONICS GmbH & Co. KG   

Date created 2021-10-05 Date modified  2021-10-05 Page 5 of 250 
 

3-
00

0
9-

0
S

01
-D

0
3_

A
P

I 
D

oc
um

en
ta

ti
on

_D
2

V
5

-F
.d

oc
x 

 

Product Reference No. Version 
(Major and Minor) 

Remarks 

FlexDevice-L 3-0087-0A01 03  
FlexDevice-L 3-0087-0A02 01  
FlexDevice-L 3-0087-0A03 01  
FlexDevice-L² 3-0087-0S02 01  
FlexDevice-L² 3-0087-0S03 01  
FlexDevice-S 3-0086-0A01 20 Supports only battery 

supply 
FlexDevice-S 3-0086-0A01 30  

Related Software Versions (Windows) 

Component Reference No. Version 
(Major and Minor) 

Remarks 

fcBase API 3-0009-0K03 S6V8 Current version supports : 
FlexCard Cyclone II (SE), 
FlexCard PMC (II), 
FlexCard USB-M, FlexCard 
PXIe3, FlexCard PCIe3, 
FlexDevice-L, FlexDevice-L², 
FlexDevice-S 

Driver fce05 3-0009-0E05 S6V8 Current version supports 
only FlexCard Cyclone II 
(SE), 
FlexCard PMC (II), 
FlexCard USB-M 

Driver fcx0d01 3-0094-0D01 S1V0 Supports FlexCard PXIe3 
and FlexCard PCIe3 

PC Hardware Interface 3-9999-0C01 2.4 Supports FlexDevices, 
Flexcard PXIe3, FlexCard 
PCIe3. 



 
 
 

 

Created by STAR ELECTRONICS GmbH & Co. KG   

Date created 2021-10-05 Date modified  2021-10-05 Page 6 of 250 
 

3-
00

0
9-

0
S

01
-D

0
3_

A
P

I 
D

oc
um

en
ta

ti
on

_D
2

V
5

-F
.d

oc
x 

 

Related Software Versions (Linux) 

Component Reference No. Version 
(Major and Minor) 

Remarks 

libflexcard API 
(libfcBase.so) 

3-0009-0U01 S6V6 FlexCard Linux driver. 
This version supports only 
FlexCard PMC-II 

Kernel module  
(flexcard) 

3-0009-0U01 S6V6 FlexCard Linux driver. This 
version supports only 
FlexCard PMC-II. 

libflexcard API 
(libfcBase_ng.so) 

3-0095-0D01 S6V8 New FlexCard Linux driver. 
Current version supports : 
FlexCard PCIe3 

Kernel module 
(flexcard_ng) 

3-0095-0D01 S6V8 New FlexCard Linux driver. 
Current version supports 
FlexCard PCIe3 

Related Software Versions (Xenomai) 

Component Reference No. Version 
(Major and Minor) 

Remarks 

libfcBase API 3-0009-0V01 S6V5 Current version supports: 
FlexCard PMC (II) 

Kernel module 3-0009-0V01 S6V5 Current version 

Related Software Versions (VxWorks) 

Component Reference No. Version 
(Major and Minor) 

Remarks 

FlexCard PMC Driver 3-0033-0D01 S2V1 Current version supports: 
FlexCard PMC 

Related Documents 

Document Ordering number 
FlexCard Cyclone II SE Instructions for Use 3-0009-0T01-D01 
FlexCard PMC Instructions for Use 3-0033-0P01-D01 
FlexCard PMC-II Instructions for Use 3-0055-0P01-D05 
FlexCard USB-M Instructions for Use 3-0058-0P01-D03 
FlexCard PXIe3/PCIe3 Instructions for Use 3-0094-0A01-D10 
FlexCard Cyclone II SE Getting started 3-0009-0S01-D02 
FlexCard PMC-II Getting started 3-0055-0P01-D07 
FlexCard USB-M Getting started 3-0058-0P01-D04 
Release Notes FlexCard Windows 3-0009-0S01-D13 
Release Notes FlexCard Linux 3-0009-0U01-D01 
Release Notes FlexCard Xenomai 3-0009-0V01-D01 
FlexDevice-L/L² Instructions for Use  3-0087-0A01-D19 
FlexDevice-S Instructions for Use 3-0086-0A01-D09 

 



 
 
 

 

Created by STAR ELECTRONICS GmbH & Co. KG   

Date created 2021-10-05 Date modified  2021-10-05 Page 7 of 250 
 

3-
00

0
9-

0
S

01
-D

0
3_

A
P

I 
D

oc
um

en
ta

ti
on

_D
2

V
5

-F
.d

oc
x 

 

Contents 

1 General ................................................................................................................................................... 13 
1.1 Intended User Group .......................................................................................................................... 13 
1.2 Intended use ...................................................................................................................................... 13 
1.3 Used Pictograms ................................................................................................................................ 14 
1.4 Safety and Handling Instructions ........................................................................................................ 15 
1.5 Meaning of Text Styles ....................................................................................................................... 15 

2 Product Description ............................................................................................................................... 16 
2.1 FlexCard fcBase API at a glance ......................................................................................................... 16 
2.2 General Function Availability .............................................................................................................. 17 
2.3 Exceptions for Function Availability .................................................................................................... 18 
2.3.1 FlexCard USB-M .................................................................................................................................  18 
2.3.2 FlexCard PXIe3 and FlexCard PCIe3 ................................................................................................... 19 
2.3.3 FlexDevices ....................................................................................................................................... 21 
2.3.4 Exclusive access limitiation ................................................................................................................ 21 
2.4 API Changes From Previous Versions ................................................................................................. 22 
2.4.1 From S1V0-F to S2V0-F ..................................................................................................................... 22 
2.4.2 From S2V0-F to S2V2-F ..................................................................................................................... 23 
2.4.3 From S2V2-F to S3V0-F ..................................................................................................................... 23 
2.4.4 From S3V0-F to S4V0-F ..................................................................................................................... 23 
2.4.5 From S4V0-F to S4V2-F ..................................................................................................................... 24 
2.4.6 From S4V2-F to S5V1-F ..................................................................................................................... 24 
2.4.7 From S5V1-F to S6V1-F ..................................................................................................................... 25 
2.4.8 From S6V1-F to S6V2-F ..................................................................................................................... 26 
2.4.9 From S6V2-F to S6V3-F ..................................................................................................................... 26 
2.4.10 From S6V3-F to S6V4-F ..................................................................................................................... 26 
2.4.11 From S6V4-F to S6V5-F ..................................................................................................................... 26 
2.4.12 From S6V5-F to S6V6-F ..................................................................................................................... 27 
2.4.13 From S6V6-F to S6V7-F ..................................................................................................................... 27 
2.4.14 From S6V7-F to S6V8-F ..................................................................................................................... 27 
2.5 Support ............................................................................................................................................. 28 

3 Getting Started ...................................................................................................................................... 29 
3.1 Installation ......................................................................................................................................... 29 
3.2 Integration ......................................................................................................................................... 31 
3.2.1 Calling Convention ............................................................................................................................. 33 
3.2.2 Loading the Dll ................................................................................................................................... 33 
3.2.3 Multithreading ................................................................................................................................... 34 
3.3 Basic Workflow .................................................................................................................................. 34 
3.3.1 Setting Up the Project ........................................................................................................................ 36 
3.3.2 Get the Installed FlexCards ................................................................................................................ 36 
3.3.3 Open a Connection ............................................................................................................................ 37 
3.3.4 FlexRay Configuration behavior FlexCard ............................................................................................ 37 
3.3.5 Start and Stop a FlexRay Measurement .............................................................................................. 39 
3.3.6 Receive FlexRay Frames ..................................................................................................................... 39 
3.3.7 Transmit FlexRay Frames ................................................................................................................... 41 
3.3.8 Close a Connection ............................................................................................................................ 41 
3.3.9 Connector/CC Mapping (FlexCard PXIe3 and FlexCard PCIe3) ............................................................ 41 
3.4 Library compatibility .......................................................................................................................... 43 



 
 
 

 

Created by STAR ELECTRONICS GmbH & Co. KG   

Date created 2021-10-05 Date modified  2021-10-05 Page 8 of 250 
 

3-
00

0
9-

0
S

01
-D

0
3_

A
P

I 
D

oc
um

en
ta

ti
on

_D
2

V
5

-F
.d

oc
x 

 

3.4.1 Library getter function ....................................................................................................................... 43 
3.4.2 Library setter function ........................................................................................................................ 43 

4 General FlexCard API Description ......................................................................................................... 44 
4.1 Error Handling .................................................................................................................................... 44 
4.1.1 Type Definitions .................................................................................................................................  44 
4.1.2 Enumerations ..................................................................................................................................... 44 
4.1.3 fcGetErrorCode .................................................................................................................................. 45 
4.1.4 fcGetErrorType ................................................................................................................................... 45 
4.1.5 fcGetErrorText ................................................................................................................................... 46 
4.2 Memory Handling ............................................................................................................................... 47 
4.2.1 Enumerations ..................................................................................................................................... 47 
4.2.2 fcFreeMemory .................................................................................................................................... 47 
4.3 Initialization ....................................................................................................................................... 48 
4.3.1 Type Definitions .................................................................................................................................  48 
4.3.2 Enumerations ..................................................................................................................................... 49 
4.3.3 Structures .......................................................................................................................................... 56 
4.3.4 fcbGetEnumFlexCardsV3 .................................................................................................................... 62 
4.3.5 fcbCheckVersion ................................................................................................................................ 63 
4.3.6 fcbOpen ............................................................................................................................................. 64 
4.3.7 fcbClose ............................................................................................................................................ 65 
4.3.8 fcbGetInfoFlexCard ............................................................................................................................ 65 
4.3.9 fcbSetUserDefinedCardId ................................................................................................................... 66 
4.3.10 fcbGetUserDefinedCardId .................................................................................................................. 67 
4.3.11 fcbGetTinyInfo ................................................................................................................................... 68 
4.3.12 fcbSetGlobalConfig ............................................................................................................................ 68 
4.4 Configuration ..................................................................................................................................... 70 
4.4.1 Enumerations ..................................................................................................................................... 70 
4.4.2 Structures .......................................................................................................................................... 70 
4.4.3 fcbReinitializeCcMessageBuffer ......................................................................................................... 71 
4.4.4 fcbGetNumberCcs .............................................................................................................................. 72 
4.4.5 fcbSetContinueOnPacketOverflow ...................................................................................................... 73 
4.4.6 fcbGetCurrentTimeStamp ................................................................................................................... 73 
4.4.7 fcbResetTimestamp ........................................................................................................................... 74 
4.4.8 fcbConfigureFlexCardTimeStamp ....................................................................................................... 74 
4.4.9 fcbGetCurrentHighResTimeStamp ...................................................................................................... 75 
4.5 Event ................................................................................................................................................. 76 
4.5.1 Enumerations ..................................................................................................................................... 76 
4.5.2 fcbSetEventHandleV2 ........................................................................................................................ 76 
4.5.3 fcbSetTimer ....................................................................................................................................... 78 
4.5.4 fcbNotificationPacket ......................................................................................................................... 78 
4.5.5 fcbSetReceiveBufferLevelNotification ................................................................................................. 79 
4.6 Receive .............................................................................................................................................. 80 
4.6.1 Typedefinitions .................................................................................................................................. 80 
4.6.2 Enumerations ..................................................................................................................................... 96 
4.6.3 fcbReceive ....................................................................................................................................... 100 

5 FlexRay API .......................................................................................................................................... 103 
5.1 Basic FlexRay Workflow ................................................................................................................... 103 
5.2 Initialization ..................................................................................................................................... 105 
5.2.1 Enumerations ................................................................................................................................... 105 



 
 
 

 

Created by STAR ELECTRONICS GmbH & Co. KG   

Date created 2021-10-05 Date modified  2021-10-05 Page 9 of 250 
 

3-
00

0
9-

0
S

01
-D

0
3_

A
P

I 
D

oc
um

en
ta

ti
on

_D
2

V
5

-F
.d

oc
x 

 

5.2.2 fcbFRMonitoringStart ....................................................................................................................... 106 
5.2.3 fcbFRMonitoringStop ....................................................................................................................... 108 
5.2.4 fcbFRGetCcState ............................................................................................................................. 109 
5.2.5 fcbFRSetTransceiverState ................................................................................................................ 109 
5.2.6 fcbFRGetTransceiverState ................................................................................................................ 110 
5.3 Configuration ................................................................................................................................... 110 
5.3.1 Constants ........................................................................................................................................ 111 
5.3.2 Enumerations ................................................................................................................................... 112 
5.3.3 Structures ........................................................................................................................................ 116 
5.3.4 fcbFRSetCcRegister ......................................................................................................................... 126 
5.3.5 fcbFRGetCcRegister ......................................................................................................................... 127 
5.3.6 fcbFRSetCcConfigurationChi ............................................................................................................ 128 
5.3.7 fcbFRSetCcConfiguration ................................................................................................................. 128 
5.3.8 fcbFRGetCcConfiguration ................................................................................................................. 130 
5.3.9 fcbFRSetMsgBufCfgMode ................................................................................................................. 131 
5.3.10 fcbFRConfigureMessageBuffer ......................................................................................................... 131 
5.3.11 fcbFRReconfigureMessageBuffer ...................................................................................................... 133 
5.3.12 fcbFRGetMessageBuffer ................................................................................................................... 133 
5.3.13 fcbFRResetMessageBuffers .............................................................................................................. 134 
5.3.14 fcbFRSetSoftwareAcceptanceFilter .................................................................................................. 134 
5.3.15 fcbFRSetHardwareAcceptanceFilter ................................................................................................. 135 
5.3.16 fcbFRSetHardwareTransmitFilter ...................................................................................................... 137 
5.3.17 fcbFRSetCcTimerConfig ................................................................................................................... 138 
5.3.18 fcbFRGetCcTimerConfig ................................................................................................................... 138 
5.3.19 fcbFRCalculateMacrotickOffset ........................................................................................................ 139 
5.4 Transmit .......................................................................................................................................... 140 
5.4.1 Enumerations ................................................................................................................................... 140 
5.4.2 fcbFRTransmit .................................................................................................................................. 141 
5.4.3 fcbFRTransmitSymbol ...................................................................................................................... 142 

6 CAN API ................................................................................................................................................ 143 
6.1 Basic CAN Workflow ........................................................................................................................ 143 
6.2 Initialization ..................................................................................................................................... 145 
6.2.1 Enumerations ................................................................................................................................... 145 
6.2.2 fcbCANMonitoringStart .................................................................................................................... 146 
6.2.3 fcbCANMonitoringStop .................................................................................................................... 147 
6.2.4 fcbCANGetCcState........................................................................................................................... 148 
6.3 Configuration ................................................................................................................................... 148 
6.3.1 Enumerations ................................................................................................................................... 148 
6.3.2 Structures ........................................................................................................................................ 149 
6.3.3 fcbCANSetCcConfiguration .............................................................................................................. 155 
6.3.4 fcbCANSetMessageBuffer ................................................................................................................ 156 
6.3.5 fcbCANGetMessageBuffer ................................................................................................................ 156 
6.3.6 fcbCANSetTxFifoConfiguration ......................................................................................................... 157 
6.3.7 fcbCANGetTxFifoConfiguration ......................................................................................................... 158 
6.3.8 fcbCANTxFifoReset .......................................................................................................................... 159 
6.3.9 fcbCANSetFilterConfiguration .......................................................................................................... 159 
6.4 Transmit .......................................................................................................................................... 160 
6.4.1 fcbCANTransmit ............................................................................................................................... 160 
6.4.2 fcbCANTxFifoTransmit ...................................................................................................................... 161 



 
 
 

 

Created by STAR ELECTRONICS GmbH & Co. KG   

Date created 2021-10-05 Date modified  2021-10-05 Page 10 of 250 
 

3-
00

0
9-

0
S

01
-D

0
3_

A
P

I 
D

oc
um

en
ta

ti
on

_D
2

V
5

-F
.d

oc
x 

 

7 CAN-FD API .......................................................................................................................................... 163 
7.1 Basic CAN-FD Workflow ................................................................................................................... 163 
7.2 CAN-FD DLC .................................................................................................................................... 165 
7.3 Configuration ................................................................................................................................... 165 
7.3.1 Enumerations ................................................................................................................................... 165 
7.3.2 Structures ........................................................................................................................................ 166 
7.3.3 fcbCANFDSetCcConfiguration .......................................................................................................... 167 
7.3.4 fcbCANSetFilterConfiguration .......................................................................................................... 168 
7.4 Transmit .......................................................................................................................................... 169 
7.4.1 Structures ........................................................................................................................................ 169 
7.4.2 fcbCANFDTransmit ........................................................................................................................... 169 

8 Ethernet API ........................................................................................................................................ 171 
8.1 Initialization ..................................................................................................................................... 171 
8.1.1 Enumerations ................................................................................................................................... 171 
8.1.2 fcbEthMonitoringStart ...................................................................................................................... 171 
8.1.3 fcbEthMonitoringStop ...................................................................................................................... 172 
8.2 Configuration ................................................................................................................................... 172 
8.2.1 Enumerations ................................................................................................................................... 172 
8.2.2 Structures ........................................................................................................................................ 173 
8.2.3 fcbEthSetCcConfiguration ................................................................................................................ 175 
8.2.4 fcbEthSetFilterConfiguration ............................................................................................................ 176 
8.3 Transmit .......................................................................................................................................... 177 
8.3.1 fcbEthTransmit ................................................................................................................................ 177 

9 Self Synchronization API .................................................................................................................... 178 
9.1 Configuration ................................................................................................................................... 178 
9.1.1 fcbConfigureMessageBufferSelfSynchronization ............................................................................... 178 
9.1.2 fcbReconfigureMessageBufferSelfSynchronization ............................................................................ 179 
9.1.3 fcbReinitializeCcMessageBufferSelfSynchronization ......................................................................... 180 
9.1.4 fcbGetCcMessageBufferSelfSynchronization .................................................................................... 180 
9.1.5 fcbResetCcMessageBuffersSelfSynchronization................................................................................ 181 
9.2 Transmit .......................................................................................................................................... 181 
9.2.1 fcbTransmitSelfSynchronization ....................................................................................................... 181 

10 Trigger API ........................................................................................................................................... 183 
10.1 Enumerations ................................................................................................................................... 183 
10.1.1 fcTriggerConditionEx ........................................................................................................................ 183 
10.1.2 fcTriggerConditionPMC .................................................................................................................... 185 
10.2 Structures ........................................................................................................................................ 186 
10.2.1 fcTriggerConfigurationEx .................................................................................................................. 186 
10.3 fcbSetTrigger ................................................................................................................................... 188 

11 Termination API .................................................................................................................................. 189 
11.1 Enumerations ................................................................................................................................... 189 
11.1.1 fcBusChannel ................................................................................................................................... 189 
11.2 fcbSetBusTerminationCc .................................................................................................................. 189 
11.3 fcbGetBusTerminationCc .................................................................................................................. 190 
11.4 fcbSetBusTermination ...................................................................................................................... 191 
11.5 fcbGetBusTermination ...................................................................................................................... 192 

12 Firmware API ....................................................................................................................................... 194 



 
 
 

 

Created by STAR ELECTRONICS GmbH & Co. KG   

Date created 2021-10-05 Date modified  2021-10-05 Page 11 of 250 
 

3-
00

0
9-

0
S

01
-D

0
3_

A
P

I 
D

oc
um

en
ta

ti
on

_D
2

V
5

-F
.d

oc
x 

 

12.1 Structures ........................................................................................................................................ 194 
12.1.1 fcFWInfo .......................................................................................................................................... 194 
12.2 fcbFWGetImageInfo .......................................................................................................................... 194 
12.3 fcbFWSelectImage ........................................................................................................................... 195 

13 Additional Linux API ........................................................................................................................... 196 
13.1 Integration ....................................................................................................................................... 196 
13.2 Event ............................................................................................................................................... 196 
13.2.1 fcbSetEventHandleSemaphore ......................................................................................................... 196 

14 Additional Xenomai API ...................................................................................................................... 198 
14.1 Integration ....................................................................................................................................... 198 
14.2 Structures ........................................................................................................................................ 198 
14.2.1 fcFROffsetSynchronization ............................................................................................................... 198 
14.3 Event ............................................................................................................................................... 199 
14.3.1 fcbWaitForEventV2 .......................................................................................................................... 199 
14.4 Initialization ..................................................................................................................................... 199 
14.4.1 fcbFRSetOffsetSynchronization ........................................................................................................ 199 
14.5 Obsolete .......................................................................................................................................... 201 
14.5.1 fcbWaitForEvent (Obsolete) .............................................................................................................. 201 

15 Additional VxWorks API ...................................................................................................................... 203 
15.1 Integration ....................................................................................................................................... 203 
15.1.1 fcDrvInit .......................................................................................................................................... 203 
15.1.2 fcDrvExit .......................................................................................................................................... 203 
15.2 Restrictions / Changes .................................................................................................................... 203 
15.2.1 Not Supported Type Definitions ........................................................................................................ 203 
15.2.2 Changed Type Definitions ................................................................................................................. 204 
15.2.3 Not Supported Functions ................................................................................................................. 213 
15.2.4 Changed Functions .......................................................................................................................... 213 
15.3 Configuration ................................................................................................................................... 217 
15.3.1 fcbSetPacketGeneration .................................................................................................................. 217 
15.3.2 fcbSetReceiveMemorySize ............................................................................................................... 217 
15.4 Event ............................................................................................................................................... 218 
15.4.1 fcbSetNotificationTypeCount ............................................................................................................ 218 

16 Obsolete .............................................................................................................................................. 220 
16.1 fcInfo (Obsolete) .............................................................................................................................. 220 
16.2 fcInfoV2 (Obsolete) .......................................................................................................................... 220 
16.3 fcVersion (Obsolete) ........................................................................................................................ 221 
16.4 fcbGetEnumFlexCards (Obsolete) ..................................................................................................... 222 
16.5 fcbGetEnumFlexCardsV2 (Obsolete) ................................................................................................. 222 
16.6 fcbMonitoringStart (Obsolete) .......................................................................................................... 223 
16.7 fcbMonitoringStop (Obsolete) .......................................................................................................... 224 
16.8 fcbGetCcState (Obsolete)................................................................................................................. 225 
16.9 fcbSetTransceiverState (Obsolete) ................................................................................................... 225 
16.10 fcbGetTransceiverState (Obsolete) ................................................................................................... 226 
16.11 fcbSetEventHandle (Obsolete) .......................................................................................................... 226 
16.12 fcbTransmit (Obsolete) ..................................................................................................................... 227 
16.13 fcbTransmitSymbol (Obsolete) ......................................................................................................... 228 
16.14 fcbSetCcRegister (Obsolete) ............................................................................................................ 228 
16.15 fcbGetCcRegister (Obsolete) ............................................................................................................ 229 



 
 
 

 

Created by STAR ELECTRONICS GmbH & Co. KG   

Date created 2021-10-05 Date modified  2021-10-05 Page 12 of 250 
 

3-
00

0
9-

0
S

01
-D

0
3_

A
P

I 
D

oc
um

en
ta

ti
on

_D
2

V
5

-F
.d

oc
x 

 

16.16 fcbChiCcConfiguration (Obsolete) .................................................................................................... 230 
16.17 fcbCanDbCcConfiguration (Obsolete) ............................................................................................... 230 
16.18 fcbConfigureMessageBuffer (Obsolete) ............................................................................................ 231 
16.19 fcbReconfigureMessageBuffer (Obsolete) ......................................................................................... 232 
16.20 fcbGetCcMessageBuffer (Obsolete) .................................................................................................. 232 
16.21 fcbResetCcMessageBuffer (Obsolete) ............................................................................................... 233 
16.22 fcbFilter (Obsolete) .......................................................................................................................... 233 
16.23 fcbSetCcTimerConfig (Obsolete) ...................................................................................................... 234 
16.24 fcbGetCcTimerConfig (Obsolete) ...................................................................................................... 234 
16.25 fcbCalculateMacrotickOffset (Obsolete) ........................................................................................... 235 
16.25.1 Trigger Configuration (Obsolete)....................................................................................................... 236 
16.26 Typedefinitions (Obsolete) ................................................................................................................ 236 
16.26.1 fcTriggerCfgHardware (Obsolete) ..................................................................................................... 236 
16.26.2 fcTriggerCfgSoftware (Obsolete)....................................................................................................... 237 
16.26.3 fcTriggerCfg (Obsolete) .................................................................................................................... 237 
16.26.4 fcTriggerInfoPacket (Obsolete) ......................................................................................................... 238 
16.27 Enumerations (Obsolete) .................................................................................................................. 238 
16.27.1 fcTriggerCondition (Obsolete) ........................................................................................................... 238 
16.27.2 fcTriggerType (Obsolete) .................................................................................................................. 239 
16.27.3 fcTriggerMode (Obsolete) ................................................................................................................. 239 
16.28 fcbTrigger (Obsolete) ....................................................................................................................... 240 
16.29 fcbSetCcIndex (Obsolete) ................................................................................................................. 240 
16.30 fcbGetCcIndex (Obsolete) ................................................................................................................ 241 
16.31 fcbFRSetCcConfigurationCANdb (Obsolete) ...................................................................................... 242 

17 Power Management ............................................................................................................................ 243 
17.1 Windows .......................................................................................................................................... 243 
17.2 Linux ............................................................................................................................................... 243 

18 Tracing ................................................................................................................................................. 244 
18.1 Overview .......................................................................................................................................... 244 
18.2 Limitation ........................................................................................................................................ 245 

19 Appendix .............................................................................................................................................. 246 
19.1 Bibliography ..................................................................................................................................... 246 
19.2 Abbreviations ................................................................................................................................... 246 
19.3 Glossary .......................................................................................................................................... 246 
19.4 List of Figures .................................................................................................................................. 246 
19.5 Index ............................................................................................................................................... 247 

 
 



 

 

Created by STAR ELECTRONICS GmbH & Co. KG   

Date created 2021-10-05 Date modified  2021-10-05 Page 13 of 250 
 

3-
00

0
9-

0
S

01
-D

0
3_

A
P

I 
D

oc
um

en
ta

ti
on

_D
2

V
5

-F
.d

oc
x 

 

1 General 

1.1 Intended User Group 

This product may only be used by expert technicians and/or engineers who are qualified and familiar with 
electronic components and systems. 

Each person involved with setup or operation of the product must 

 be a qualified technician or engineer 

 strictly adhere to this manual 

 receive a briefing by an authorized person 

 

NOTICE 

If you are unsure of how to use the product as intended or have any questions about the 
use of the product, please discontinue use of the product immediately and contact the 
STAR Electronics Support.  

 

 

 WARNING 

The product may only be used by expert technicians and/or engineers who are qualified 
and familiar with electronic components and systems! 

The use of the product by non-professionals is not permitted and strictly forbidden! 
 

The FlexCard fcBase API is a testing equipment. It was developed to test the communication behavior of 
automotive bus systems and Ethernet together with Electronics Control Units and sensors in a fully 
controlled testing and/or laboratory environment. 
For this intended use, the FlexCard fcBase API offers the following options: 

- Transmit and receive data (e.g. Use Case “Remaining Bus Simulation”) 

- Exchange of data traffic between two or more bus systems (e.g. Use Case “Gateway”) 

- Manipulation of data traffic (e.g. Use Case “Manipulation of signal values based on user 
configuration”) 

- Recording of data traffic (e.g. Use Case “Logging”) 

Any deviation from the intended use and/or installation in a testing vehicle is only permitted with specific 
prior written approval of STAR ELECTRONICS GmbH & Co. KG. 

 

 WARNING 

The FlexCard fcBase API may be used to communicate with networked electronic 
systems. E.g. FlexRay, CAN or Ethernet. 

Any use of the product outside a fully controlled testing and/or laboratory environment 
may result in death or serious injury due to unpredictable behavior of a vehicle and/or 
potentially missing, deactivated, or malfunctioning safety devices on a vehicle! 

The user is responsible to ensure the safety of the entire system. This includes amongst 
other things a safety shutdown. 

 



 

 

Created by STAR ELECTRONICS GmbH & Co. KG   

Date created 2021-10-05 Date modified  2021-10-05 Page 14 of 250 
 

3-
00

0
9-

0
S

01
-D

0
3_

A
P

I 
D

oc
um

en
ta

ti
on

_D
2

V
5

-F
.d

oc
x 

 

 

 WARNING 

Any use of the device to control an actuator outside a fully controlled testing and/or 
laboratory environment may result in death or serious injury due to unpredictable 
behavior of a vehicle and/or potentially missing, deactivated or malfunctioning safety 
devices on a vehicle! 

 

 

NOTICE 

The device is not a calibrated measurement device. STAR ELECTRONICS GmbH & Co. KG 
accepts no liability whatsoever for the correctness of any measurement results.  

 

 

 WARNING 

The FlexCard fcBase API is NOT designed, intended, or authorized any may NOT be used 
for or in connection with the following purposes and/or devices: 

 - use as part of medical systems 

 - life support applications 

 - aviation, space, nuclear, or military applications 

 - use in areas where combustible or explosive gas mixtures are likely to occur 

 - any other purposes / devices deviating from the intended use of the product 
 specified by STAR ELECTRONICS GmbH & Co. KG. 

 

 

 WARNING 

The product may only be used by expert technicians and/or engineers who are qualified 
and familiar with electronic components and systems! 

The use of the product by non-professionals is not permitted and strictly forbidden! 
 

1.3 Used Pictograms 

The meaning of used pictograms is shortly described below. 

Follow the specific instructions in the document where these pictograms are placed: 



 

 

Created by STAR ELECTRONICS GmbH & Co. KG   

Date created 2021-10-05 Date modified  2021-10-05 Page 15 of 250 
 

3-
00

0
9-

0
S

01
-D

0
3_

A
P

I 
D

oc
um

en
ta

ti
on

_D
2

V
5

-F
.d

oc
x 

 

 

 WARNING 

Used to indicate a potentially hazardous situation which,  
if not avoided, could result in death or serious injury. 

  

 

 CAUTION 

Used to indicate a potentially hazardous situation which, 
if not avoided, could result in minor or moderate injury. 

  

 

NOTICE 

Used to indicate a situation which may result in an operating failure. 

Damage of the product may occur, but there is no hazard of injury 
if not avoided. 

  

 

Information 

Used to indicate information provided only for purposes of clarification, illustration, and 
general information. 

 

1.4 Safety and Handling Instructions 

Please read the instructions for use carefully. To protect the device or the application against damage, or 
to avoid personal injury the FlexCard fcBase API has to be handled as described herein.  

Changes or modifications of the FlexCard fcBase API are not allowed for safety and warranty reasons! 

STAR ELECTRONICS GmbH & Co. KG is not liable for any damages arising from non-observance of the 
product information. 

Follow the 
a) specific safety and handling instructions placed at dedicated document positions  
b) general safety and handling instructions below: 

1.5 Meaning of Text Styles 

In this document filenames, source code, FlexRay Protocol Variable, functions and structs are 
marked with a different text format. 



 

 

Created by STAR ELECTRONICS GmbH & Co. KG   

Date created 2021-10-05 Date modified  2021-10-05 Page 16 of 250 
 

3-
00

0
9-

0
S

01
-D

0
3_

A
P

I 
D

oc
um

en
ta

ti
on

_D
2

V
5

-F
.d

oc
x 

 

2 Product Description  

2.1 FlexCard fcBase API at a glance 

This document describes the application programming interface (API) fcBase API for the FlexCard and 
FlexDevices. For simplicity, the devices of the FlexDevice family are also called “FlexCard” if no special handling 
is needed. The API defines the basic functions and structures which are used to communicate with the FlexCard 
hardware, the FlexRay and CAN bus. With these functions the developer can integrate the FlexCard in a FlexRay 
cluster and CAN network. 
 
The following figure illustrates a typical approach of accessing the FlexRay and CAN bus via the FlexCard: 

 

Figure 1: Overview of a typical FlexCard system with hardware and software 

The fcBase API consists of the following groups of functions: 

• Error handling → Functions to get detailed error information 
• Configuration → Functions and structures to configure the available Communication Controller and the 

FlexCard hardware. For example, bus parameters, message buffers and the triggers may be configured. 



 

 

Created by STAR ELECTRONICS GmbH & Co. KG   

Date created 2021-10-05 Date modified  2021-10-05 Page 17 of 250 
 

3-
00

0
9-

0
S

01
-D

0
3_

A
P

I 
D

oc
um

en
ta

ti
on

_D
2

V
5

-F
.d

oc
x 

 

• Initialization → Functions to enumerate the FlexCards in the system, to establish a connection to a 
FlexCard and to start and stop the monitoring of the FlexRay and CAN bus. 

• Transmit / Receive → Functions to receive FlexRay and CAN frames or informational frames (e.g. Trigger 
information), or to transmit a FlexRay and CAN frame on a specific slot or id. 

• Event handling → Functions to obtain event handles which are signalled if a specific time elapses, a wake-
up pattern is detected or at the start of a new FlexRay cycle. 

 

Additional there is a tracing module, which can only be accessed by the tracing control application. For 
further information refer to chapter 18 in this document. 

 

Figure 2: fcBase API groups 

The FlexCard API uses a well-defined naming convention. Each function, structure or enumeration is 
prefixed with fc or fcb. The prefix fcb (fcBase) stands for a function, a structure or an enumeration which is 
only available in the fcBase API. Functions, structures, or enumerations which are prefixed with fc are not 
limited to the fcBase API and could also be available in other FlexCard APIs. 

Each function of this library (except some error handling functions) returns an error code. If the return 
value is equal to zero, no error occurred. A number greater than zero indicates an error. To get more 
information about it, use the error handling functions described in chapter 4.1. 

Some functions will allocate memory for you. In such a case the fcFreeMemory function needs to be 
called to release this memory. 

2.2 General Function Availability 

There are some functional hardware and software differences between FlexCard products which demand 
additional functions or enumerations. The differences are listed in the table below: 



 

 

Created by STAR ELECTRONICS GmbH & Co. KG   

Date created 2021-10-05 Date modified  2021-10-05 Page 18 of 250 
 

3-
00

0
9-

0
S

01
-D

0
3_

A
P

I 
D

oc
um

en
ta

ti
on

_D
2

V
5

-F
.d

oc
x 

 

Functions FlexCard 
Cyclone II 

(SE) 

FlexCard 
USB-M 

FlexCard 
PMC 

FlexCard 
PMC-II 

FlexDevice S 
/ L / L² 

FlexCard 
PXIe3 / 
PCIe3 

General FlexCard 
API Description 

 Available 

FlexRay API Available (depends on firmware configuration) Limited. See 
additional 
notes in 
section 

2.3.2.3 for 
details 

Depends on 
firmware 

configuration. 
See additional 

notes in 
section 2.3.2 

for details. 

CAN API Available (depends on firmware configuration) 

CAN-FD API Not available Available 

Trigger API 
2 trigger lines, 
unidirectional 

2 trigger lines, 
configurable 

Not available 

Termination API 
Not 

available 
Not 

available Available Available Not available 

Firmware API 
Not 

available Available Not 
available Available Not available Not available 

The functions are in different header files, but all functions are provided by fcBase.dll (or libfcBase API 
under Linux/Xenomai). If the function you called is not supported on the selected hardware, the FlexCard 
API will return an error. 

Following a list of the supported number of Communication Controllers per FlexCard device: 

Functions FlexCard 
Cyclone II (SE) 

FlexCard USB-
M 

FlexCard PMC FlexCard PMC-
II 

FlexCard 
PXIe3 / PCIe3 

and 
FlexDevice 

CC count 1 CC for 
FlexRay 
and 
2 CCs for CAN-
HS 

1 CC for 
FlexRay 
and 
2 CCs for CAN-
HS, 
1 CC for CAN-
LS 

2 CCs for 
FlexRay 
or 
1 CC for 
FlexRay 
and 2 CCs for 
CAN-HS 

Variable 
interface 
configurations 
for FlexRay and 
CAN 
max. 4 FlexRay 
CCs 
or 
max. 8 CAN-HS 
CCs 
with FlexTiny II 
possible. 

Variable 
interface 
configuration 
possible 
(FlexRay, CAN, 
CAN-FD, 
Ethernet) 

The features are only available with the correct firmware, mounted FlexTiny module, driver and license. 

2.3 Exceptions for Function Availability 

This chapter lists the differences in the functional range compared to the general function availability (see 
chapter 2.2). Exceptions may also be found in the Operation System chapters. 

2.3.1 FlexCard USB-M 

The FlexCard USB-M driver doesn’t support the following functions: 

 fcbSetEventHandleV2 
 fcbSetReceiveBufferLevelNotification 
 fcbSetTimer 
 fcbFRSetTransceiverState 
 fcbFRGetTransceiverState 
 fcbFRSetCcTimerConfig 



 

 

Created by STAR ELECTRONICS GmbH & Co. KG   

Date created 2021-10-05 Date modified  2021-10-05 Page 19 of 250 
 

3-
00

0
9-

0
S

01
-D

0
3_

A
P

I 
D

oc
um

en
ta

ti
on

_D
2

V
5

-F
.d

oc
x 

 

 fcbFRGetCcTimerConfig 
 fcbFRCalculateMacrotickOffset 

2.3.2 FlexCard PXIe3 and FlexCard PCIe3 

The FlexCard PXIe3 and FlexCard PCIe3 supports two different operating modes which are dependent on 
the used FPGA firmware. 

2.3.2.1 FlexDevice Mode 

The FlexCard runs a restbus simulation / gateway application on the embedded ARM Cortex processor. The 
embedded application has full access to the communication controllers so only a limited subset of API 
features will work. The monitoring part is done via extra bus decoder modules which are completely 
independent from the existing communication controllers. 

Use FlexConfig RBS to configure the restbus simulation / gateway. Refer to the document 
FlexConfig_RBS_UserManual (3-0016-0Q01-D04) [8]. 

 

Information 

The settings of the busses (for example the baudrate) in the FlexDevice Mode are done via 
FlexConfig RBS, not via fcBase API. 

 

The frames received via the fcBase API in this mode have the direction set accordingly. If the embedded 
application transmits the packet, the fcBase API packet has direction tx. Otherwise the packet has the 
direction set to rx. 

The following functions can be used in the FlexDevice Mode: 

 fcGetErrorType 
 fcGetErrorCode 
 fcGetErrorText 
 fcFreeMemory 
 fcbGetEnumFlexCardsV3 
 fcbCheckVersion 
 fcbOpen 
 fcbClose 
 fcbGetInfoFlexCard 
 fcbGetNumberCcs 
 fcbSetContinueOnPacketOverflow 
 fcbGetCurrentTimeStamp 
 fcbResetTimestamp 
 fcbConfigureFlexCardTimeStamp 
 fcbGetCurrentHighResTimeStamp 
 fcbReceive 
 fcbFRMonitoringStart 
 fcbFRMonitoringStop 
 fcbCANMonitoringStart 
 fcbCANMonitoringStop 
 fcbEthMonitoringStart 
 fcbEthMonitoringStop 
 

2.3.2.2 FlexCard Mode 

In the FlexCard Mode only the host computer controls the communication controller. It is not required to 
run a FlexConfig RBS project on the embedded processor. Almost all fcBase API functions are available. 

The FlexCard mode does not support the following functions: 

 fcbSetReceiveBufferLevelNotification 
 fcbNotificationPacket 
 fcbSetUserDefinedCardId 
 fcbGetUserDefinedCardId 
 fcbFWGetImageInfo 
 fcbFWSelectImage 
 fcbSetBusTermination 
 fcbGetBusTermination 



 

 

Created by STAR ELECTRONICS GmbH & Co. KG   

Date created 2021-10-05 Date modified  2021-10-05 Page 20 of 250 
 

3-
00

0
9-

0
S

01
-D

0
3_

A
P

I 
D

oc
um

en
ta

ti
on

_D
2

V
5

-F
.d

oc
x 

 

 fcbNotificationPacket 
 fcbTrigger 
 fcbFRSetSoftwareAcceptanceFilter 
 fcbFRSetHardwareTransmitFilter 
 fcbFRSetOffsetSynchronization 
 fcbCANSetCcConfiguration 
 fcbCANSetMessageBuffer 
 fcbCANGetMessageBuffer 
 fcbCANSetTxFifoConfiguration 
 fcbCANGetTxFifoConfiguration 
 fcbCANTxFifoReset 
 fcbCANSetFilterConfiguration 
 fcbCANTransmit 
 fcbCANTxFifoTransmit 
 fcbEthMonitoringStart 
 fcbEthMonitoringStop 
 fcbEthSetCcConfiguration 
 fcbEthSetFilterConfiguration 
 fcbEthTransmit 
 fcbUARTOverCANMonitoringStart 
 fcbUARTOverCANMonitoringStop 
 fcbUARTOverCANSetCcConfiguration 
 fcbUARTOverCANGetCcConfiguration 
 fcbUARTOverCANTransmit 
 

2.3.2.3 Supported packet types 

The following table shows the supported packets depending on the operation mode of the device. 

Packet type FlexDevice Mode FlexCard Mode  

fcFlexRayFrame Yes Yes 

fcInfoPacket No Yes 

fcErrorPacket No Yes 

fcStatusPacket No Yes 

fcTriggerInfoPacket No No 

fcTxAcknowledgePacket Yes Yes 

fcNMVectorPacket No No 

fcNotificationPacket No No 

fcTriggerExInfoPacket No Yes 

fcCANPacket No No 

fcCANErrorPacket No No 

fcCANFDPacket Yes Yes 

fcCANFDErrorPacket Yes Yes 

fcEthernetPacket Yes (CRC is not checked) No 

fcEthernetErrorPacket Yes No 

fcUARTOverCANPacket No No 

fcUARTOverCANErrorPacket No No 

fcUARTOverCANTxAckPacket No No 

 



 

 

Created by STAR ELECTRONICS GmbH & Co. KG   

Date created 2021-10-05 Date modified  2021-10-05 Page 21 of 250 
 

3-
00

0
9-

0
S

01
-D

0
3_

A
P

I 
D

oc
um

en
ta

ti
on

_D
2

V
5

-F
.d

oc
x 

 

2.3.3 FlexDevices 

Internally, the fcBase API uses for FlexDevices the PC Hardware Interface (HwCom). The HwCom 
documentation is available from STAR ELECTRONICS GmbH & Co. KG. The physical connection to the 
device depends on the hardware type. E.g., the FlexDevice L² uses the medium Ethernet to connect the 
host pc to the device. It is possible that other device types use other mediums. 

The following functions can be used with FlexDevice: 

 fcGetErrorType 
 fcGetErrorCode 
 fcGetErrorText 
 fcFreeMemory 
 fcbGetEnumFlexCardsV3 
 fcbCheckVersion 
 fcbOpen 
 fcbClose 
 fcbGetInfoFlexCard 
 fcbGetNumberCcs 
 fcbReceive 
 fcbCANSetCcConfiguration 
 fcbCANMonitoringStart 
 fcbCANMonitoringStop 
 fcbCANTxFifoTransmit 
 fcbCANSetFilterConfiguration 
 fcbCANFDSetCcConfiguration 
 fcbFRSetCcConfigurationChi 
 fcbFRSetCcConfiguration 
 fcbFRGetCcConfiguration 
 fcbFRMonitoringStart 
 fcbFRMonitoringStop 
 fcbFRTransmit 
 fcbEthSetCcConfiguration 
 fcbEthMonitoringStart 
 fcbEthMonitoringStop 
 fcbEthTransmit 
 fcbSetGlobalConfig 
 

2.3.3.1 Device Discovery 

For the FlexDevice family, the device discovery uses currently ICMP ping with raw sockets which requires 
that the process executing FlexCard API needs administrator privileges. Otherwise no FlexDevices will be 
found. 

2.3.3.2 Required TCP/UDP Ports 

Using the FlexDevices with the FlexConfig SDK on a network protected by a Windows Firewall, the firewall 
must be configured to permit FlexCard API to access the FlexDevice network resources. 

The following ports must be open on the computer running the FlexCard API: 

Ports Incoming/Outgoing Protocol Description 
1500 Outgoing TCP Used for HW-Com normal protocol operation 
15300 Incoming UDP Used for HW-Com Streaming. In case the port 

is already used, the next free port after 
15300 will be used 

15300 Outgoing UDP Used for HW-Com frame transmissions 

2.3.4 Exclusive access limitiation  

For FlexDevice it cannot be guaranteed that no other application will get access to the API functionality at 
the same time as the lock is based on the IP address of the PC. 

If multiple fcBase API applications are running on the PC at the same time, the user must ensure that the 
device is only accessed by the API from one application. Otherwise, an undefined behavior can occur. 



 

 

Created by STAR ELECTRONICS GmbH & Co. KG   

Date created 2021-10-05 Date modified  2021-10-05 Page 22 of 250 
 

3-
00

0
9-

0
S

01
-D

0
3_

A
P

I 
D

oc
um

en
ta

ti
on

_D
2

V
5

-F
.d

oc
x 

 

2.4 API Changes From Previous Versions 

2.4.1 From S1V0-F to S2V0-F 

Change Reason Page Remark 
Definition of type fcQuad corrected Portability 48 Downwardly compatible. 

Works with applications 
which are designed for 
S1V0-F. 

Enumeration fcTransceiverState added New feature 113  
Function fcbSetTransceiverState added  New feature 225  
Function fcbGetTransceiverState added New feature 226  
Structure fcMsgBufCfgTx modified. New 
configuration options 
TxAcknowledgeShowNullFrames and 
TxAcknowledgeShowPayload added. 
TxAcknowledge packets work in all transmission 
modes. 

Feature 
extended 

123 Downwardly compatible. 
Works with applications 
which are designed for 
S1V0-F, if the reserved 
member of this structure 
was set to zero. 

New member fcNoticiationTypeWakeup for 
enumeration fcNotifyType added for getting 
notification if one of the transceivers has detected 
a wakeup event. 

Feature 
extended 

76 Downwardly compatible. 
Works with applications 
which are designed for 
S1V0-F. 

Function fcbNotificationPacket added New feature 78  
Structure fcInfoPacket modified. Rate and offset 
correction information added. 

Feature 
extended 

80 Downwardly compatible. 
Works with applications 
which are designed for 
S1V0-F. 

Structure fcFlexRayFrame modified. Timestamp 
information added. 

Feature 
extended. 

80 Downwardly compatible. 
Works with applications 
which are designed for 
S1V0-F. 

Structure fcTxAcknowledgePacket modified. 
Additional information about the transmitted 
frame added. 

Feature 
extended. 

82 Downwardly compatible. 
Works with applications 
which are designed for 
S1V0-F. 

Structure fcNotificationPacket added New feature 88  
Structure fcPacket modified. fcNotificationPacket 
information added 

Feature 
extended. 

91 Downwardly compatible. 
Works with applications 
which are designed for 
S1V0-F. 

Enumeration fcErrorPacketFlag extended. Feature 
extended. 

97 Downwardly compatible. 
Works with applications 
which are designed for 
S1V0-F. 



 

 

Created by STAR ELECTRONICS GmbH & Co. KG   

Date created 2021-10-05 Date modified  2021-10-05 Page 23 of 250 
 

3-
00

0
9-

0
S

01
-D

0
3_

A
P

I 
D

oc
um

en
ta

ti
on

_D
2

V
5

-F
.d

oc
x 

 

2.4.2 From S2V0-F to S2V2-F 

Change Reason Page Remark 
PMC functions added: 
fcbSetCCIndex, fcbGetCCIndex, 
fcbSetTermination, fcbGetTermination 
PMC Enumerations added: 
fcBusChannel, fcBusType 

New features 189, 
240 

 

Added new trigger functionality for FlexCard 
Cyclone II and FlexCard Cyclone SE. Triggers can 
be OR-ed now. 

Feature 
extended 

72  

Added Xenomai support function for event 
handling 

New feature 201  

2.4.3 From S2V2-F to S3V0-F 

Change Reason Page Remark 
Added Self synchronization for FlexCard Cyclone 
II (SE) 

New features 163 Firmware-Version S3V0-F is 
needed 

2.4.4 From S3V0-F to S4V0-F 

Change Reason Page Remark 
Added CAN API for FlexCard Cyclone II (SE) New features 143 Firmware-Version 

S4V0-F is needed 
Added function fcbResetTimestamp. New feature 73  
Added function fcbGetNumberCcs. New feature 72  
Added function fcbSetContinueOnPacketOverflow. New feature 73  
Added function fcbCalculateMacrotickOffset. New feature 235  
Added function fcbGetCcTimerConfig. New feature 234  
Added function fcbSetCcTimerConfig. New feature 234  
Added function fcbCheckVersion New feature 63  
New packets CAN packet and CAN error packet. New feature 89, 91  
Extended enumeration fcPacketType  Feature 

extended 
96 Downwardly 

compatible. 
Extended enumeration fcCC Feature 

extended 
49 Downwardly 

compatible. 
Extended enumeration fcTriggerConditionEx Feature 

extended 
183 Downwardly 

compatible. 
Structure fcTriggerExInfoPacket modified. Reserved1 added Feature 

extended 
88 Downwardly 

compatible. 
Structure fcCcTimerCfg added. New feature 125  
Enumeration fcCyclePos added. New feature 115  
Enumeration fcNotificationType modified. 
fcNotificationTypeCcTimer added. 

Feature 
extended 

76 Downwardly 
compatible. 

Enumeration fcMemoryType modified. fcMemoryTypeInfoV2 
added. 

Feature 
extended 

47 Downwardly 
compatible. 

Structure fcInfoV2 added. New feature 220  
Added function fcbGetEnumFlexCardsV2. New feature 221  
Added function fcbReinitializeCcMessageBuffer New feature 71  
Added function 
fcbReinitializeCcMessageBufferSelfSynchronization 

New feature 181  

Added function fcbGetCurrentTimeStamp New feature 73  



 

 

Created by STAR ELECTRONICS GmbH & Co. KG   

Date created 2021-10-05 Date modified  2021-10-05 Page 24 of 250 
 

3-
00

0
9-

0
S

01
-D

0
3_

A
P

I 
D

oc
um

en
ta

ti
on

_D
2

V
5

-F
.d

oc
x 

 

2.4.5 From S4V0-F to S4V2-F 

Change Reason Page Remark 
CAN API is supported by FlexCard Cyclone II (SE) and 
FlexCard PMC/PCI. 

New features 143 Firmware-Version 
S4V2-F is needed 

Added additional Linux API. New feature 196  
Xenomai: Added thread-safe function for event handling. New feature 199  
Added new thread-safe FlexRay API for all supported 
devices. 

New features 103  

Extended enumeration fcNotificationType. Feature 
extended 

76 Downwardly 
compatible. 

Added thread-safe function for event handling. New feature 76  
Structure fcFlexRayFrame modified. AsyncMode added. Feature 

extended 
80 Downwardly 

compatible. 

2.4.6 From S4V2-F to S5V1-F 

Change Reason Page Remark 
Structure fcMemoryType modified. 
fcMemoryTypeInfoHwSW added. 

Feature 
extended 

47 Downwardly 
compatible. 

Enumeration fcFlexCardDeviceId modified. fcFlexCardPMCII 
added. 

Feature 
extended 

50 Downwardly 
compatible. 

Structure fcVersionCC modified. IncorrectPhysicalLayer 
added. 

Feature 
extended 

57 Downwardly 
compatible. 

Structure fcInfoHw added. New feature 59  
Structure fcInfoSw added. New feature 60  
Structure fcInfoHwSw added. New feature 61  
Added function fcbGetEnumFlexCardsV3 New feature 62  
Added function fcbGetInfoFlexCard New feature 65  
Added function fcbSetUserDefinedCardId New feature 66 Firmware-Version 

S5V1-F is needed 
Added function fcbGetUserDefinedCardId New feature 67 Firmware-Version 

S5V1-F is needed 
Added function fcbFRSetHardwareAcceptanceFilter New feature 135 Firmware-Version 

S5V1-F is needed 
Structure fcFlexRayFrame modified. FrameCRC added. Feature 

extended 
80 Downwardly 

compatible. 
Structure fcTxAcknowledgePacket modified. ValidFrame, 
SyntaxError, ContentError added. 

Feature 
extended 

82 Downwardly 
compatible. 

Structure fcCANMonitoringMode modified. 
fcCANMonitoringSilent, fcCANMonitoringActive, 
fcCANMonitoringPassive added. 

Feature 
extended 

145 Downwardly 
compatible. 

Structure fcCANBufCfgTx modified. newData added. Feature 
extended 

150 Downwardly 
compatible. 

Structure fcCANBufCfgRemoteTx modified. newData added. Feature 
extended 

152 Downwardly 
compatible. 

Added FlexCard PMC-II description New features 17  
Enumeration fcBusChannel modified. fcBusChannel5 to 
fcBusChannel8 added. 

Feature 
extended 

189 Downwardly 
compatible. 



 

 

Created by STAR ELECTRONICS GmbH & Co. KG   

Date created 2021-10-05 Date modified  2021-10-05 Page 25 of 250 
 

3-
00

0
9-

0
S

01
-D

0
3_

A
P

I 
D

oc
um

en
ta

ti
on

_D
2

V
5

-F
.d

oc
x 

 

2.4.7 From S5V1-F to S6V1-F 

Change Reason Page Remark 
Added typedef fcBool. New feature 48  
Structure fcVersionCC modified. Ansi-C conformity. Feature 

extended 
57 Downwardly 

compatible. 
Structure fcInfo modified. Ansi-C conformity. Feature 

extended 
220 Downwardly 

compatible. 
Structure fcInfoV2 modified. Ansi-C conformity. Feature 

extended 
220 Downwardly 

compatible. 
Structure fcInfoHwSw modified. Ansi-C conformity. Feature 

extended 
61 Downwardly 

compatible. 
Structure fcPacket modified. Ansi-C conformity. Feature 

extended 
91 Downwardly 

compatible. 
Enumeration fcNotificationType modified. 
fcNotificationTypeReceiveBufferLevel added. 

Feature 
extended 

76 Downwardly 
compatible. 

Added function fcbSetReceiveBufferLevelNotification. New feature 79 Firmware-Version 
S6V1-F is needed 

Function fcbGetEnumFlexCardsV3 modified. Ansi-C 
conformity. 

Feature 
extended 

62 Downwardly 
compatible. 

Function fcbMonitoringStart modified. Ansi-C conformity. Feature 
extended 

223 Downwardly 
compatible. 

Function fcbTrigger modified. Ansi-C conformity. Feature 
extended 

240 Downwardly 
compatible. 

Function fcbSetTimer modified. Ansi-C conformity. Feature 
extended 

78 Downwardly 
compatible. 

Function fcbSetCcTimerConfig modified. Ansi-C conformity. Feature 
extended 

234 Downwardly 
compatible. 

Function fcbSetContinueOnPacketOverflow modified. Ansi-
C conformity. 

Feature 
extended 

73 Downwardly 
compatible. 

Function fcbNotificationPacket modified. Ansi-C conformity. Feature 
extended 

78 Downwardly 
compatible. 

Added enumerations fcFRMsgBufCfgMode. New features 113  
Added function fcbFRSetMsgBufCfgMode. New feature 131  
Added function fcbFRSetHardwareTransmitFilter. New feature 137 Firmware-Version 

S6V1-F is needed 
Function fcbFRMonitoringStart modified. Ansi-C conformity. Feature 

extended 
105 Downwardly 

compatible. 
Function fcbFRSetCcTimerConfig modified. Ansi-C 
conformity. 

Feature 
extended 

138 Downwardly 
compatible. 

Function fcbFRSetHardwareAcceptanceFilter modified. 
Ansi-C conformity. 

Feature 
extended 

135 Downwardly 
compatible. 

Function fcbCANMonitoringStart modified. Ansi-C 
conformity. 

Feature 
extended 

146 Downwardly 
compatible. 

Function fcbCANSetMessageBuffer modified. Ansi-C 
conformity. 

Feature 
extended 

156 Downwardly 
compatible. 

Function fcbCANTransmit modified. Ansi-C conformity. Feature 
extended 

160 Downwardly 
compatible. 

Added function fcbSetBusTerminationCc. New features 189  
Added function fcbGetBusTerminationCc. New features 190  
Function fcbSetBusTermination modified. Ansi-C 
conformity. 

Feature 
extended 

191 Downwardly 
compatible. 

Function fcbGetBusTermination modified. Ansi-C 
conformity. 

Feature 
extended 

192 Downwardly 
compatible. 



 

 

Created by STAR ELECTRONICS GmbH & Co. KG   

Date created 2021-10-05 Date modified  2021-10-05 Page 26 of 250 
 

3-
00

0
9-

0
S

01
-D

0
3_

A
P

I 
D

oc
um

en
ta

ti
on

_D
2

V
5

-F
.d

oc
x 

 

Change Reason Page Remark 
Structure fcInfoSw modified. LicensedForLabviewDriver 
added. 

Feature 
extended 

60 Downwardly 
compatible. 

Structure fcFWInfo added. New features 194  
Added function fcbFWGetImageInfo. New features 194 Firmware-Version 

S6V1-F is needed 
Added function fcbSetSelectImage. New features 195 Firmware-Version 

S6V1-F is needed 

2.4.8 From S6V1-F to S6V2-F 

Change Reason Page Remark 
Enumeration fcTriggerConditionEx modified. 
fcTriggerOutOnTimeStampChanged added. 

Feature 
extended 

183 Downwardly 
compatible 

Enumeration fcTriggerConditionPMC modified. 
fcTriggerPMCOutOnTimeStampChanged added. 

Feature 
extended 

185 Downwardly 
compatible 

Enumeration fcTimeStampSourceMode added. New features 70  
Enumeration fcFlexCardDeviceId modified. Feature 

extended 
50 Downwardly 

compatible. 
Structure fcTimeStampCfg added. New features 70  
Added function fcbConfigureFlexCardTimeStamp. New features 74 Firmware-Version 

S6V2-F is needed 
Added function fcbGetCurrentHighResTimeStamp. New features 75 Firmware-Version 

S6V2-F is needed 
Structure fcNumberCC modified. FlexRaySelfSync added. Feature 

extended 
56 Downwardly 

compatible 
Structure fcVersionCC modified. FaultTolerantCAN added. Feature 

extended 
57 Downwardly 

compatible 

2.4.9 From S6V2-F to S6V3-F 

Change Reason Page Remark 
Structure fcCANTxFifoConfig added. New features 154  
Added function fcbCANSetTxFifoConfiguration. New features 157 Firmware-Version 

S6V3-F is needed 
Added function fcbCANGetTxFifoConfiguration. New features 158 Firmware-Version 

S6V3-F is needed 
Added function fcbCANTxFifoReset. New features 159 Firmware-Version 

S6V3-F is needed 
Added function fcbCANTxFifoTransmit. New features 161 Firmware-Version 

S6V3-F is needed 

2.4.10 From S6V3-F to S6V4-F 

No API change. 

2.4.11 From S6V4-F to S6V5-F 

No API change. 



 

 

Created by STAR ELECTRONICS GmbH & Co. KG   

Date created 2021-10-05 Date modified  2021-10-05 Page 27 of 250 
 

3-
00

0
9-

0
S

01
-D

0
3_

A
P

I 
D

oc
um

en
ta

ti
on

_D
2

V
5

-F
.d

oc
x 

 

2.4.12 From S6V5-F to S6V6-F 

Change Reason Page Remark 
Added enum fcCANFDFrameFormat, structure 
fcCANCcBitTime, structure fcCANFDCcConfig, structure 
fcCANFDTxFrame. 

New features 165  

Enum fcTimeStampSourceMode extended. Feature 
extended 

70 Downwardly 
compatible 

Added function fcbCANFDSetCcConfiguration, 
fcbCANFDTransmit. 

New features 167 Firmware-Version 
S6V6-F (6.5.0.33) 
is needed 

Added function fcbGetTinyInfo. New features 68 Firmware-Version 
S6V6-F (6.5.0.33) 
is needed 

2.4.13 From S6V6-F to S6V7-F 

Change Reason Page Remark 
Enum fcBusType extended to support CAN-FD and Ethernet Feature 

extended 
49 Downwardly 

compatible 
Enum fcCCType extended to support CAN-FD and Ethernet Feature 

extended 
50 Downwardly 

compatible 
Enum fcFlexCardDeviceId extended to support FlexCard 
PXIe3 and FlexCard PCIe3 

Feature 
extended 

50 Downwardly 
compatible 

Added Enum fcConnector to support mapping connectors 
to cc index. 

New feature 53 Only FlexCard 
PXIe3 and PCIe3 
and FlexDevice 

Enum fcNumberCC extended to support Ethernet  Feature 
extended 

56 Downwardly 
compatible 

Enum fcVersionCC extended to support mapping 
connectors to cc index.  

Feature 
extended 

57 Downwardly 
compatible 

Added structure fcEthernetPacket. New feature 93 Downwardly 
compatible 

Structure fcPacket extended to support fcEthernetPacket Feature 
extended 

94 Downwardly 
compatible 

Enum fcPacketType extended to support fcEthernetPacket Feature 
extended 

96 Downwardly 
compatible 

Added new functions fcbEthMonitoringStart 
fcbEthMonitoringStop 

New feature 171 Only FlexCard 
PXIe3 and PCIe3 
and FlexDevice 

Added support for FlexDevices New feature 20 Only FlexDevice 
Added new function fcbSetGlobalConfig New feature 68 Only FlexDevice 
Added new functions fcbEthSetCcConfiguration and 
fcbEthTransmit 

New featiure 175 Only FlexDevice 

2.4.14 From S6V7-F to S6V8-F 

Change Reason Page Remark 
Enum fcTinyType extended. Feature 

extended 
52 Downwardly 

compatible 
Enum fcInfoHw extended to support field 
FullCommunicationControllerAccess. 

Feature 
extended 

59 Downwardly 
compatible 

Added function fcbCANSetFilterConfiguration. New feature 168 Only FlexDevice 
Added function fcbEthSetFilterConfiguration. New feature 176 Only FlexDevice 



 

 

Created by STAR ELECTRONICS GmbH & Co. KG   

Date created 2021-10-05 Date modified  2021-10-05 Page 28 of 250 
 

3-
00

0
9-

0
S

01
-D

0
3_

A
P

I 
D

oc
um

en
ta

ti
on

_D
2

V
5

-F
.d

oc
x 

 

2.5 Support 

There is support available by STAR ELECTRONICS GmbH & Co. KG regarding software (device driver and 
API) and hardware. Before you submit a problem, ensure that you have the latest release of the software. 
The latest versions of the device driver and API are available from our support team or on our web site: 
http://www.star-cooperation.com/ee-solutions 

If you encounter a problem, please send an email to support-ee@star-cooperation.com, including the 
following information: 

• Description of your problem 

• Detailed steps to reproduce the problem 

• Version number of the device driver or loadable kernel module 

• Version number of the DLL or shared object library 

• Version number of the hardware 

• Version number of the firmware 

• Serial number of your FlexCard 

• The application you are using 

• Your computer system (manufacturer and type of PC, e.g. Dell Inspiron 7500) 

• Your operating system (Windows 7, Linux, Xenomai, VxWorks) 

• The cardbus or PCI adapter in your PC (e.g. Texas Instruments, …) 

• If possible the CC configuration file or string or a CC parameter list 

 

http://www.star-cooperation.com/ee-solutions
http://www.star-cooperation.com/ee-solutions
mailto:support-ee@star-cooperation.com


 

 

Created by STAR ELECTRONICS GmbH & Co. KG   

Date created 2021-10-05 Date modified  2021-10-05 Page 29 of 250 
 

3-
00

0
9-

0
S

01
-D

0
3_

A
P

I 
D

oc
um

en
ta

ti
on

_D
2

V
5

-F
.d

oc
x 

 

3 Getting Started 

In this section the necessary steps for developing a FlexCard application with Windows operating systems 
are specified. First, the setup of the files and the integration in an Integrated Development Environment 
(IDE) is described. The next section provides a guideline with important steps to create an application. This 
includes the functions and structures which should normally be used. A more in depth view about the used 
functions can be found in chapter 4 et seq 

3.1 Installation 

For details about the installation process please refer to the installation section in [1]. After a successful 
installation of the developer package the following directory structure should exist: 

 

Figure 3: FlexCard directory structure 

The directory Docs contains the documentation (Instructions for Use and Getting started guides) in PDF 
format. The API documentation is only present if during the installation the setup type Developer was 
selected. 

The directory bin/driver contains the folders for the manual installation of the device driver: 

• Fce05 (FlexCard PMC2 and USB-M device driver for the Windows™ 10 and later 64 Bit operating 
system) 

• fceth (FlexCard PMC2 ethernet device driver for the Windows™ 10 and later 64 Bit operating system) 

• Fcxd01 (FlexCard PXIe3 and PCIe3 device driver for the Windows™ 10 and later 64 Bit operating 
system) 

• fcethx (FlexCard PXIe3 and PCIe3 ethernet device driver for the Windows™ 10 and later 64 Bit 
operating system) 



 

 

Created by STAR ELECTRONICS GmbH & Co. KG   

Date created 2021-10-05 Date modified  2021-10-05 Page 30 of 250 
 

3-
00

0
9-

0
S

01
-D

0
3_

A
P

I 
D

oc
um

en
ta

ti
on

_D
2

V
5

-F
.d

oc
x 

 

• Sc_WinPcap (FlexCard PMC2, PXIe3 and PCIe3 WinPcap packet filter device driver for the 
Windows™ 10 and later 64 Bit operating system) 

The previous directory is not required for developing user defined application, whereas the two following 
directories are a must-have for developers. 

The directory Include contains the API definition, namely the fcBase header files and library files for 64 Bit 
Windows™ 10 and later operating system plattforms. 

• fcBase.h: The file includes the definition of the basic API functions.  

• fcBaseTypes.h: The file contains the data types and enumerations (e.g. possible error codes) used 
by the basic functions. 

• fcBaseFlexRay.h: This file contains definitions of functions specific for FlexRay. 

• fcBaseTypesFlexRay.h: The data types and enumerations for the FlexRay functions are defined 
here. 

• fcBasePMC.h: The file includes additional definitions of API functions which are to use with 
FlexCard PMC and FlexCard PMC-II only.  

• fcBaseTypesPMC.h: The file (for the FlexCard PMC and FlexCard PMC-II only) contains additional 
data types and enumerations used in this library. 

• fcBaseCAN.h: The file includes the definition of the API functions which are to be used with a CAN 
license only. Contains CAN/ CAN-FD functionality. 

• fcBaseTypesCAN.h: The file (for FlexCards with CAN license only) contains additional data types 
and enumerations for CAN/ CAN-FD used in this library. 

• fcBaseUARTOverCAN.h: The file includes the definition of the API functions which are used for the 
UARTOverCAN functionality. 

• fcBaseTypesUARTOverCAN.h: The file contains additional data types and enumerations for 
UARTOverCAN used in this library. 

• Lib/amd64: Contains the fcBase.dll and fcBase.lib as 64 Bit version. 

• Lib/x86: Contains the fcBase.dll and fcBase.lib as 32 Bit version. 

The directory Sample contains the following directories: 

• Demo1: Configuration files for a cluster composed of two FlexCards 

• Demo2: Configuration files for a cluster composed of one FlexCard and two FlexNodes. 

• fcDemo: Contains the source files for the demo application. 

• fcDemoCAN: Contains the source files for the CAN demo application for a FlexCard. 

• fcDemoCANFD: Contains the source files for the CAN-FD demo application for a FlexCard. 

• fcDemoPMC: Contains the source files for the demo application for a FlexCard PMC-II. 

• fcDemoUARTOverCAN: Contains the source files for the demo application for the UARTOverCAN 
functionality. 

• ScWinPcap: Contains the source files for the demo application for accessing WinPcap 
functionality. 

The directory Tools contains the following applications: 

• CANBaudrateCalculator.exe: Application to calculate CAN CC configuration for fcBase CAN API. 

• fcDemo.exe: The demo application for one FlexRay CC. 

• fcDemoCAN.exe: The demo application for two CAN CCs. 

• fcDemoCANFD.exe: The demo application for two CAN-FD CCs. 

• fcDemoPMC.exe: The demo application for two FlexRay CCs. 

• fcDemoUARTOverCAN.exe: The demo application for two UARTOverCAN CCs. 



 

 

Created by STAR ELECTRONICS GmbH & Co. KG   

Date created 2021-10-05 Date modified  2021-10-05 Page 31 of 250 
 

3-
00

0
9-

0
S

01
-D

0
3_

A
P

I 
D

oc
um

en
ta

ti
on

_D
2

V
5

-F
.d

oc
x 

 

• FlexAlyzerV2.exe: FlexRay and CAN monitoring application for FlexCard products. 

• FlexUpdate.exe: Firmware and license update application for FlexCard products. 

 

 

Information 

The windows installer will copy the fcBase.dll into your <windows>\system32 directory. On 
Windows 64 bit, fcBase.dll 32 Bit will be copied to <windows>\SysWOW64. If you do not use 
the windows installer, please check if the desired version of the DLL is loaded. A description 
of the DLL search order which is used by the Windows operating system can be found in [2]. 

3.2 Integration 

There are different ways to integrate the fcBase DLL into your application depending on the development 
platform and language. Under Microsoft Visual Studio the integration is done via the property 
pages/project settings. 

 

Figure 4: Integration under Microsoft Visual Studio 2010 

Another alternative for Microsoft compiler users is to include the fcBase API via the Microsoft specific pre-
processor command: 

#pragma comment( lib , “fcBase.lib”) 

 

To complete the integration of the fcBase API into your user defined application, you have to add the files 
fcBaseTypes.h, fcBaseTypesFlexRay.h, fcBase.h and fcBaseFlexRay.h. The include order is important 
because the file fcBase.h uses definitions which are declared in fcBaseTypes.h and the file fcBaseFlexRay.h 
uses definitions which are declared in fcBaseTypes.h and fcBaseTypeFlexRay.h. For FlexCard PMC-II usage 
please also include the files fcBaseTypesPMC.h and fcBasePMC.h in the right order. In case you want to 



 

 

Created by STAR ELECTRONICS GmbH & Co. KG   

Date created 2021-10-05 Date modified  2021-10-05 Page 32 of 250 
 

3-
00

0
9-

0
S

01
-D

0
3_

A
P

I 
D

oc
um

en
ta

ti
on

_D
2

V
5

-F
.d

oc
x 

 

access the CAN functionality of the FlexCard, the files fcBaseTypesCAN.h and fcBaseCAN.h should be also 
included. 

#include “fcBaseTypes.h” 
#include “fcBaseTypesFlexRay.h” 
#include “fcBase.h” 
#include “fcBaseFlexRay.h” 
 
//Additional for PMC usage  
#include “fcBaseTypesPMC.h” 
#include “fcBasePMC.h” 
 
//Additional for CAN usage  
#include “fcBaseTypesCAN.h” 
#include “fcBaseCAN.h” 
 

The setup program sets the environment variable FLEXCARD_INC which directly points to the fcBase 
include directory. This variable can be used as shown in the figures below. 

 

Figure 5: Using the variable FLEXCARD_INC under Microsoft Visual Studio 2010 (Compiler) 

 



 

 

Created by STAR ELECTRONICS GmbH & Co. KG   

Date created 2021-10-05 Date modified  2021-10-05 Page 33 of 250 
 

3-
00

0
9-

0
S

01
-D

0
3_

A
P

I 
D

oc
um

en
ta

ti
on

_D
2

V
5

-F
.d

oc
x 

 

 

Figure 6: Using the variable FLEXCARD_INC under Microsoft Visual Studio 2010 (Linker) 

 

 

NOTICE 

Ensure you use the directory of the fcBase library and header files which corresponds to the 
loaded DLL. A description of the DLL search order which is used by the windows operating 
system can be found in [2]. 

3.2.1 Calling Convention 

The dynamic link library for Windows was developed under Microsoft Visual Studio 2010 C++. The 
Microsoft C/C++ compiler supports several calling conventions (__cdecl, __stdcall, __fastcall, this, naked). 
To provide access to the fcBase.dll 32 Bit for other languages (e.g. Visual Basic), the functions are declared 
with __stdcall calling convention (function arguments are pushed onto the stack from right to left, the 
callee cleans the stack). On fcBase.dll 64 bit the user does not have to specify a calling convention, 
because there is only one. 

3.2.2 Loading the Dll 

When you use the standard “inf” installation, you don’t have to append the fcBase.dll path to the Windows 
PATH environment variable. On a Windows 64 Bit installation, loading fcBase.dll in a 64 bit application will 
load it from <windows>\system32 and loading it in a 32 bit application will load it from <windows>\ 
SysWOW64. 



 

 

Created by STAR ELECTRONICS GmbH & Co. KG   

Date created 2021-10-05 Date modified  2021-10-05 Page 34 of 250 
 

3-
00

0
9-

0
S

01
-D

0
3_

A
P

I 
D

oc
um

en
ta

ti
on

_D
2

V
5

-F
.d

oc
x 

 

3.2.3 Multithreading 

All functions, which are not declared as obsolete, of the fcBase library are thread-safe. If you are using the 
fcBase functions in the context of a multi-threaded program, the library ensures that only one thread is 
accessing the internal shared data at any given time. 

3.3 Basic Workflow 

This section will guide you through the necessary workflow for creating an application for the FlexCard. The 
following figure shows a typical workflow. For FlexRay refer to 5.1 Basic FlexRay Workflow, for CAN refer to 
6.1 Basic CAN Workflow. The main functions and principles for building a user defined application are 
introduced in this chapter. Demo applications for the FlexRay/CAN usage (source code and binary) are 
installed with the FlexCard Windows Developer Setup. 



 

 

Created by STAR ELECTRONICS GmbH & Co. KG   

Date created 2021-10-05 Date modified  2021-10-05 Page 35 of 250 
 

3-
00

0
9-

0
S

01
-D

0
3_

A
P

I 
D

oc
um

en
ta

ti
on

_D
2

V
5

-F
.d

oc
x 

 

 

Figure 7: Typical FlexCard workflow 



 

 

Created by STAR ELECTRONICS GmbH & Co. KG   

Date created 2021-10-05 Date modified  2021-10-05 Page 36 of 250 
 

3-
00

0
9-

0
S

01
-D

0
3_

A
P

I 
D

oc
um

en
ta

ti
on

_D
2

V
5

-F
.d

oc
x 

 

3.3.1 Setting Up the Project 

The sample code projects are installed by the setup on Windows to the Program Files path, to the directory 
StarCooperation\FlexCard\Sample. This directory cannot be used directly because only users with 
administrator rights may write there. That is why the user should copy the sample directory to different 
place. 

For the development of the example project we will use Microsoft Visual Studio 2003 with the 
programming language C/C++ and the Microsoft Foundation Class (MFC). The Visual Studio project wizard 
will generate the framework for our MFC dialog based application (for more details, please refer to the 
documentation of Microsoft Visual Studio 2003). 

As described in the chapter Integration, we must add the library and header files of the fcBase API. This 
can be done easily at the end of the file stdafx.h. Ensure your compiler and linker use the correct path to 
the fcBase header and library files. 

// fcBase API 
#pragma comment(lib,”fcBase.lib”) 
#include “fcBaseTypes.h” 
#include “fcBase.h” 
 
// additional for FlexCards with FlexRay 
#include “fcBaseTypesFlexRay.h” 
#include “fcBaseFlexRay.h” 
 
// additional for FlexCards with CAN 
#include “fcBaseTypesCAN.h” 
#include “fcBaseCAN.h” 
 
// additional for FlexCard PMC and FlexCard PMC-II 
#include “fcBaseTypesPMC.h” 
#include “fcBasePMC.h” 
 
// own headers 

3.3.2 Get the Installed FlexCards 

Before we can open a connection to a FlexCard, we require a valid FlexCard identifier. This can be done 
with the function fcbGetEnumFlexCardsV3 which returns a list of FlexCards found in the system. In the 
method CselectFlexCardDlg::OnInitDialog() in our example we call 
fcbGetEnumFlexCardsV3 to fill the combo box with available FlexCards found in the system. 

 

Information 

The fcInfoHwSw structure contains valid FlexCard information only if the member 
FlexCardId is greater than 0. The FlexCardId is later used to open a connection to 
the FlexCard. 

 

fcError e = fcbGetEnumFlexCardsV3(&m_pInfoHwSw, false); 
if (0 == e) 
{ 
 // Iterate through the list of flexcards 
 fcInfoHwSw* pCurrent = m_pInfoHwSw; 
 while (NULL != pCurrent) 
 { 
  // only if we got a valid flexcard identfier 
  if ( 0 != pCurrent->FlexCardId ) 
  { 
   Cstring szItem; 
   szItem.Format(“FlexCard #%d”,pCurrent->InfoHardware.Serial); 
   
   // Add the string to the combo box 
   int nIndex = m_FlexCardComboBox.InsertString(0,szItem); 
   m_FlexCardComboBox.SetItemDataPtr(nIndex,pCurrent); 
  } 



 

 

Created by STAR ELECTRONICS GmbH & Co. KG   

Date created 2021-10-05 Date modified  2021-10-05 Page 37 of 250 
 

3-
00

0
9-

0
S

01
-D

0
3_

A
P

I 
D

oc
um

en
ta

ti
on

_D
2

V
5

-F
.d

oc
x 

 

  // get the next flexcard 
  pCurrent = pCurrent->pNext; 
 } 
} 

 

If the user selects one of the items in the combo box, we save the member FlexCardId from the structure 
fcInfoHwSw into the member variable m_flexcardIdentifier (see 
CselectFlexCardDlg::UpdateVersionInformation). 

Int nCurrentSelection = m_FlexCardComboBox.GetCurSel(); 
if (-1 != nCurrentSelection) 
{ 
 fcInfo* pCurrent = 
  (fcInfo*)m_FlexCardComboBox.GetItemDataPtr(nCurrentSelection); 

 
// Save the flexcard identifier 
m_flexcardIdentifier = pCurrent->FlexCardId; 
… 

} 

 

Once finished with the selection of a FlexCard, we have to free the memory which was allocated by the 
function fcbGetEnumFlexCardsV3. 

CselectFlexCardDlg::~CselectFlexCardDlg() 
{ 
 if (NULL != m_pInfo) 
 { 
  fcFreeMemory(fcMemoryTypeInfoHwSw,m_pInfo); 
  m_pInfo = NULL; 
 } 
} 

3.3.3 Open a Connection 

After getting a valid FlexCard identifier, we use it to open a connection to the FlexCard. The function 
fcbOpen expects this identifier and returns a handle (to the previously selected FlexCard) which is later 
used in all other functions. 

 

Information 

The function fcbOpen resets all configuration settings. That means that all Communication 
Controller registers are set to their default value and the FlexRay message buffers are 
configured as FIFO buffer 

 

... 
m_hFlexCard = NULL; 
fcError e = fcbOpen(&m_hFlexCard,dlg.FlexCardIdentifier()); 
... 

3.3.4 FlexRay Configuration behavior FlexCard 

To integrate the FlexCard into a FlexRay cluster it is essential to configure its Communication Controller 
registers. These registers describe global cluster parameters (e.g. gdStaticSlot), node parameters (e.g. 
pMicroPerCycle) and Communication Controller specific settings. The global cluster parameters are 
identical for all nodes of a cluster, whereas the node parameters are set for each node individually. 

The FlexRay CC configuration is possible via directly entering the bus parameters, or by passing a CHI-file. 
If one of the parameters is not correct, the integration of the FlexCard and/or the communication may fail. 
Therefore, it is recommended to use a tool which helps generate a valid FlexRay configuration for each 
node. FlexConfig Developer from STAR ELECTRONICS GmbH & Co. KG is such a tool. It exports the bus 
parameters as CHI-file. 



 

 

Created by STAR ELECTRONICS GmbH & Co. KG   

Date created 2021-10-05 Date modified  2021-10-05 Page 38 of 250 
 

3-
00

0
9-

0
S

01
-D

0
3_

A
P

I 
D

oc
um

en
ta

ti
on

_D
2

V
5

-F
.d

oc
x 

 

In our example we use a CHI-compatible string to configure the FlexCard. As the function 
fcbFRSetCcConfigurationChi expects a string, we read and parse the configuration file into a string. 

Std::string s; 
std::ifstream file(szPath); 
if (! File.is_open())  
{ 
 // Print error message 
 return; 
} 
 
char ch; 
while (file.get(ch)) s += ch; 
file.close(); 

This string is passed to the function fcbFRSetCcConfigurationChi which will configure the specified 
Communication Controller registers described in the chi file. Setting a configuration via this function will 
override the previous configuration of this CC. 

fcCC eCC = fcCC1; 
fcError e = fcbFRSetCcConfigurationChi(m_hFlexCard, eCC, s.c_str()); 

As we want to transmit messages on the FlexRay bus, we have to configure transmit buffers for the 
FlexCard. To configure such a buffer two options exist: Using the function 
fcbFRConfigureMessageBuffer or via the CHI configuration string. There is a significant difference 
between these two methods: While fcbFRConfigureMessageBuffer returns the index of the configured 
message buffer, fcbFRSetCcConfigurationChi does not. And considering that to transmit the content 
of a message buffer, the function fcbFRTransmit requires its index; we need a way to retrieve it. The 
following code performs this task for all configured transmit message buffers. 

// Get all transmit message buffers 
unsigned int bufferIdx = 1; // The first valid buffer is 1 
while (true) 
{ 
 fcMsgBufCfg cfg; 
 fcCC eCC = fcCC1; 
 
 // as long no error occurs we try to get each buffer 
 fcError e = fcbFRGetMessageBuffer(m_hFlexCard,eCC,bufferIdx,&cfg); 
 if (0 != e) break; 
   
 // is this a tx buffer, then add it to our list 
 if (fcMsgBufTx == cfg.Type) Buffers[bufferIdx] = cfg; 
  
 // next buffer index 
 bufferIdx++; 
} 

The function fcbFRConfigureMessageBuffer is used to add a message buffer dynamically. This 
function checks the given message buffer settings and will report an error in the case of a mismatch with a 
global cluster parameter or a node specific parameter. The returned error informs the user about the 
mismatch. Before setting the members of a struct, initialize it to zero. 

fcMsgBufCfg cfg; 
 
memset(&cfg, 0, sizeof(fcMsgBufCfg)); // Initialize to zero 
cfg.Type = fcMsgBufTx; 
cfg.ChannelFilter = fcChannelA; 
cfg.CycleCounterFilter = 0; 
cfg.Tx.FrameId = 5; 
cfg.Tx.TxAcknowledgeEnable = 1; 
cfg.Tx.PayloadLength = 16; 
cfg.Tx.PayloadLengthMax = 16; 
cfg.Tx.PayloadPreambleIndicator = 0; 
cfg.Tx.StartupFrameIndicator = 0; 
cfg.Tx.SyncFrameIndicator = 0; 
cfg.Tx.TransmissionMode = fcMsgBufTxSingleShot; 
cfg.Tx.TxAcknowledgeShowNullFrames = 0; 
cfg.Tx.TxAcknowledgeShowPayload = 0; 
 
fcCC eCC=fcCC1; 



 

 

Created by STAR ELECTRONICS GmbH & Co. KG   

Date created 2021-10-05 Date modified  2021-10-05 Page 39 of 250 
 

3-
00

0
9-

0
S

01
-D

0
3_

A
P

I 
D

oc
um

en
ta

ti
on

_D
2

V
5

-F
.d

oc
x 

 

unsigned int bufferIdx = 0; 
fcError e = fcbFRConfigureMessageBuffer(m_hFlexCard,eCC,&bufferIdx,cfg); 
 
if (0 != e)  
{ 
  ShowErrorI; 
} 

Via the function fcbFRReconfigureMessageBuffer and with some restrictions the user can modify an 
existing message buffer. 

3.3.5 Start and Stop a FlexRay Measurement 

After having successfully configured the FlexCard, the monitoring can be started through the function 
fcbFRMonitoringStart. To use the FlexCard as a wake-up node, the flag enableWakeup has to be set 
to true (the FlexCard must have been previously configured with the correct wake-up settings). To use the 
FlexCard as a start-up node, the flag enableColdstart has to be set to true (one transmit buffer with 
both start-up and sync flags set must have been previously configured). In the case of the integration of a 
FlexCard into a running cluster, none of these two parameters has to be set. To be notified at the start of 
each cycle, the flag enableCycleStartEvents has to be set to true and the user has to provide an event 
object (used to signal when a new cycle starts) to the function fcbSetEventHandleV2. 

// create the event handle which is signaled when a new cycle starts 
const bool cyclestart = true; 
fcCC eCC=fcCC1; 
 
HANDLE hEvent = ::CreateEvent(NULL,FALSE,FALSE,NULL); 
 
// inform the api that the event should be used when a new cycle starts 
fcError e = fcbSetEventHandleV2(m_hFlexCard, eCC, 
 hEvent, fcNotificationTypeCycleStarted); 
 
// no coldstart and wake-up attempt have to be done 
const bool coldstart = false; 
const bool wakeup = false; 
 
fcError e = fcbFRMonitoringStart(m_hFlexCard,eCC,fcMonitoringNormal,true, 
  cyclestart,coldstart,wakeup); 

 

After starting the monitoring, it is highly recommended to verify that the integration has succeeded. It can 
be determined either by receiving (via fcbReceive) a status packet with the flag 
fcStatusStartupCompletedSuccessfully set or by calling the function fcbFRGetCcState and 
checking that the return value is fcStateNormalActive. 

Calling the function fcbFRMonitoringStop will stop the monitoring and set back the Communication 
Controller in its configuration state, fcStateConfig. 

3.3.6 Receive FlexRay Frames 

Once the monitoring started, the FlexCard begins to monitor the FlexRay bus. The received FlexRay frames 
and the FlexCard generated packets (Info frame, Error frame, etc.) can be fetched by the function 
fcbReceive. A call to this function will get all available packets from the FlexCard. 

The code below uses the cycle start event to collect the received data of the previous cycles. If the event is 
signalled or if the timeout elapses, we get the available received packets (fcPacket) by calling the function 
fcbReceive. The timeout is used as a fallback if the FlexCard is not successfully integrated and no cycle 
start events could be generated. The FlexCard USB-M does not support events, so WAIT_TIMEOUT is 
signalled. 



 

 

Created by STAR ELECTRONICS GmbH & Co. KG   

Date created 2021-10-05 Date modified  2021-10-05 Page 40 of 250 
 

3-
00

0
9-

0
S

01
-D

0
3_

A
P

I 
D

oc
um

en
ta

ti
on

_D
2

V
5

-F
.d

oc
x 

 

DWORD CdemoDlg::Thread() 
{ 
 // … Code removed for listing … 
 fcCC eCC=fcCC1; 
 // create the event handle which is signaled when a new cycle starts 
  
 hEvents[1] = ::CreateEvent(NULL,FALSE,FALSE,NULL); 
 
 // inform the api that the event should be used when a new cycle starts 
 fcError e = fcbSetEventHandleV2(m_hFlexCard,eCC,hEvents[1], 

  fcNotificationTypeCycleStarted); // not for FlexCard USB-M 
 
 // … Code removed for listing 
 
 while (endlessLoop) 
 { 
  // Wait until an event is signaled or until timeout has elapsed 
  DWORD dwResult = ::WaitForMultipleObjects(2,hEvents,false, 

   dwTimeOutMilliseconds); 
   
  switch (dwResult) 
  { 
  case WAIT_OBJECT_0+1:  // Cycle start event 
  case WAIT_TIMEOUT:     // or time is elasped 
   {  
    //Update our transmit buffers 
    AutomaticTransmit(); 
     
    fcPacket* pPacket = NULL; 
    e = fcbReceive(m_hFlexCard, &pPacket); 
    if (0 == e) 
    { 
     ProcessPackets(pPacket); 
     e = fcFreeMemory(fcMemoryTypePacket, pPacket); 
    } 
    else 
    { 
     // … Code removed for listing 
    } 
   } 
   break; 
   
  // … Code removed for listing 
 } 
 // … Code removed for listing 
} 

The fcbReceive function returns the received data as a linked list of packets. The code below goes 
through the whole list and processes each packet. 

Void CdemoDlg::ProcessPackets(fcPacket* pPackets) 
{ 
 fcPacket* p = pPackets; 
 while (NULL != p) 
 { 
  switch (p->Type) 
  { 
  case fcPacketTypeInfo:    
   // … Code removed for listing 
   break; 
  case fcPacketTypeFlexRayFrame:  
   // … Code removed for listing 
   break; 
  // … Code removed for listing 
  default: 
   
  }; 
 



 

 

Created by STAR ELECTRONICS GmbH & Co. KG   

Date created 2021-10-05 Date modified  2021-10-05 Page 41 of 250 
 

3-
00

0
9-

0
S

01
-D

0
3_

A
P

I 
D

oc
um

en
ta

ti
on

_D
2

V
5

-F
.d

oc
x 

 

 // get the next packet 
  p = p->pNextPacket; 
 } 
} 

 

 

Information 

If an error packet with the flag fcErrFlexcardOverflow is received, the monitoring can not 
continue in case the FlexCard is set to stop if a packet overflow occurred 
(fcbSetContinueOnPacketOverflow). This error occurs if the application is too slow to 
receive and process the packets. In such a case it is necessary to stop the monitoring and start it 
again. 

After processing the packets, the memory allocated by the packet list must be released. 

ProcessPackets(pPacket); 
e = fcFreeMemory(fcMemoryTypePacket, pPacket); 

3.3.7 Transmit FlexRay Frames 

To transmit a frame on the FlexRay bus you need to have previously configured a transmit buffer and to 
know its index. The transmission is done by calling the fcbFRTransmit function. 

fcCC eCC=fcCC1; 
fcWord payload[fcPayloadMaximum]; 
payload[0] = 0x0001; // Update your payload data 
 
fcError e = fcbFRTransmit(m_hFlexCard,eCC,bufferIdx, 
   payload,payloadLength); 

The transmit function expects the index of the Communication Controller, the index of the transmit buffer, 
the payload of the frame (the data) and the length of the payload section (the data length). The configured 
payload length (set during configuration of the transmit buffer) and the payload length to transmit (set 
during call to fcbFRTransmit) must match. It is recommended to check the error that is returned by the 
function. 

3.3.8 Close a Connection 

Once the measurement finished, closing the connection to the FlexCard is done by calling the function 
fcbClose. 

3.3.9 Connector/CC Mapping (FlexCard PXIe3 and FlexCard PCIe3) 

The FlexCard PXIe3 and FlexCard PCIe3 have five connectors at the front panel. The connectors are 
numbered from 1 to 5. Each connector can have 8 channels, they are numbered A to H. You can use the 
PcHwIf and the command COM_GetRBSChannelsInfoReq to get a list of the channels from the RBS 
perspective. The rbs channel number and the rbs channel bus type is contained. A different way to get the 
rbs channel number for a bus is in FlexConfig RBS. After you added a bus on a connector, you can hover 
the mouse over it. The HW-Channel displayed is the rbs channel number. 

The fcBase API uses a bus type and a cc index to identify a channel. A table of the mapping of a rbs 
channel bus type to a fcBase bus type follows. 

Rbs channel bus type fcBase bus type 
COM_BUSTYPE_FlexRay fcBusTypeFlexRay 
COM_BUSTYPE_CAN 

fcBusTypeCAN 
COM_BUSTYPE_CAN_LS 
COM_BUSTYPE_CAN_HS 
COM_BUSTYPE_CAN_FD 



 

 

Created by STAR ELECTRONICS GmbH & Co. KG   

Date created 2021-10-05 Date modified  2021-10-05 Page 42 of 250 
 

3-
00

0
9-

0
S

01
-D

0
3_

A
P

I 
D

oc
um

en
ta

ti
on

_D
2

V
5

-F
.d

oc
x 

 

Rbs channel bus type fcBase bus type 
COM_BUSTYPE_BROADR_REACH 

fcBusTypeEth 
COM_BUSTYPE_BROADR_REACH_SWITCHED 
COM_BUSTYPE_ETH 
COM_BUSTYPE_ETH_SWITCHED 

The fcBase API goes through all rbs channel numbers from 1 to maximum. It gives the first occurrence of a 
bus type the fcBase index fcCC1. The next occurrence will get the fcBase index fcCC2, and so on. 

The FlexRay bus type is a special case. FlexRay channel A and FlexRay channel B get different rbs channel 
numbers. In the fcBase API they are addressed together via fcBase bus type and a fcCC. 

When you use the fcBase API and call fcbGetEnumFlexCardsV3, you get a list of the devices in the pc. For 
each device, the available ccs are listed. For each cc, the connector that it corresponds to is listed. The 
variable ConnectorIndex can be found in the struct fcVersionCC. 

In order that analyzing is working on a channel, several conditions have to be met: 

• A compatible FlexTiny module has to be mounted on the device 

• A FlexConfig RBS application needs to be running 

• A decoder must be present in the firmware 

When not all of these conditions are met, the channel will not be visible in the struct fcVersionCC that is 
returned by fcbGetEnumFlexCardsV3. 

The following example shows the device configuration in FlexConfig RBS and the mapping to the fcBase 
bus type and cc index. 

 
Figure 8: The device configuration in FlexConfig RBS and the mapping to the fcBase bus type and cc index. 



 

 

Created by STAR ELECTRONICS GmbH & Co. KG   

Date created 2021-10-05 Date modified  2021-10-05 Page 43 of 250 
 

3-
00

0
9-

0
S

01
-D

0
3_

A
P

I 
D

oc
um

en
ta

ti
on

_D
2

V
5

-F
.d

oc
x 

 

3.4 Library compatibility 

The Library offers a C interface to the application. For compatibility reasons, new features are added as 
new Library functions. 

To make extensions to existing Library functions possible, it uses reserved fields in structs. When a new 
Library version introduces a new field, a reserved field is used for it. That way the size of the function 
parameter stays the same. 

3.4.1 Library getter function 

App old. Library old. No problem. 
App old. Library new (backwards compatibility). App must ignore the reserved fields. E.g. the App 

must not binary compare two structs. 
App new. Library old (upwards compatibility). App should consider checking the library version. 
App new. Library new. No problem. 

3.4.2 Library setter function 

App old. Library old. No problem. 
App old. Library new (backwards compatibility). App must zero the reserved fields. 
App new. Library old (upwards compatibility). App should consider checking the library version. 
App new. Library new. No problem. 

 



 

 

Created by STAR ELECTRONICS GmbH & Co. KG   

Date created 2021-10-05 Date modified  2021-10-05 Page 44 of 250 
 

3-
00

0
9-

0
S

01
-D

0
3_

A
P

I 
D

oc
um

en
ta

ti
on

_D
2

V
5

-F
.d

oc
x 

 

4 General FlexCard API Description 

This chapter describes the application programming interface in detail. Each section represents a group of 
operations dedicated to a common purpose (configuring, initializing, receiving…). For each group, the data 
definition (structures and enumerations) is first described, followed by the API functions illustrated with 
code samples. 

For additional API description, which depends on the used operating system and/or used FlexCard device, 
please refer to the following major chapters. 

Please note the following limitations of the FlexCard driver: 

• The latency in transmit direction is influenced by the underlying operating system. Jitter is possible 
when the driver is interrupted by processes with a higher priority. 

• If the PC lacks performance, it may lead to a buffer overflow in the receive path. In this case the 
measurement must be restarted. 

• The FlexCard API does not support the loading of network databases directly. 

4.1 Error Handling 

Almost every function in this library returns with an error status number. The meaning of this status code 
can be retrieved with the following functions and enumerations. Additional to this status code it is possible 
to get hints about the error if you use the tool fcTracerControl.exe. For more information about the tracing 
tool please refer to Tracing. 

 

Information 

In a few situations you will not get a meaningful error text. This happens for example if the 
device driver reports an error to the API. In such a case only the error code ACTION_FAILED 
is returned. To get a more detailed error description it may be helpful to use the tracing 
module. 

4.1.1 Type Definitions 

4.1.1.1 fcError 
This type provides information about an error. A zero value means no error occurred. To extract the 
detailed information about an error, use the functions fcGetErrorType, fcGetErrorText and 
fcGetErrorCode. 

Typedef unsigned int fcError; 
 

 

Information 

fcError is not equivalent to fcErrorCode (see fcErrorCode) 

 

4.1.2 Enumerations 

4.1.2.1 fcErrorCode 
This enumeration contains all error codes which are reported by the fcBase API. To extract the error code 
from a fcError use the fcGetErrorCode function. To get information for the error code, use the 
fcGetErrorText function. For detailed error description please refer to the Headerfile fcBaseTypes.h. 

See Also 
fcGetErrorCode, fcGetErrorText, fcGetErrorType 



 

 

Created by STAR ELECTRONICS GmbH & Co. KG   

Date created 2021-10-05 Date modified  2021-10-05 Page 45 of 250 
 

3-
00

0
9-

0
S

01
-D

0
3_

A
P

I 
D

oc
um

en
ta

ti
on

_D
2

V
5

-F
.d

oc
x 

 

4.1.2.2 fcErrorType 
This enumeration defines the type of error information. To get the fcErrorType from a fcError, use 
the fcGetErrorType function. 

Typedef enum fcErrorType 
{ 

fcErrorTypeSuccess  = 0, 
fcErrorTypeInformation = 1, 
fcErrorTypeWarning  = 2, 
fcErrorTypeError  = 3, 

} fcErrorType; 

Members 
fcErrorTypeSuccess 

No error. 
fcErrorTypeInformation 

The error should be treated as an information message. The function has succeeded but wants to 
give additional information. 

fcErrorTypeWarning 
The error should be treated as a warning message. The function has succeeded but the input 
parameters are modified or not completely accepted. 

fcErrorTypeError 
The error should be treated as an error message. The function has failed. 

See Also 
fcGetErrorType, fcGetErrorText, fcGetErrorCode 

4.1.3 fcGetErrorCode 

This function returns the error code for a given error. A zero value indicates no error occurred. The list of 
all error codes can be found in the fcErrorCode enumeration (see fcBaseTypes.h). 

fcErrorCode fcGetErrorCode( 
 fcError error 
); 

Parameters 
error  

[IN] An error value of type fcError 

Return values 
Error code 

See Also 
fcErrorCode, fcGetErrorType, fcGetErrorText 

4.1.4 fcGetErrorType 

This function returns the error type for a given error. Please, refer to fcErrorType for more details. 

fcErrorType fcGetErrorType( 
 fcError error 
); 

Parameters 
error 

[IN] An error value of type fcError 



 

 

Created by STAR ELECTRONICS GmbH & Co. KG   

Date created 2021-10-05 Date modified  2021-10-05 Page 46 of 250 
 

3-
00

0
9-

0
S

01
-D

0
3_

A
P

I 
D

oc
um

en
ta

ti
on

_D
2

V
5

-F
.d

oc
x 

 

Return values 
Error type 

See Also 
fcErrorType, fcGetErrorCode, fcGetErrorText 

Example 
fcError e = fcbFRSetCcConfigurationChi(hFlexCard,eCC,pszChi); 
if (0 != e) 
{ 
 // oops, something went wrong 
 fcErrorType etype = fcGetErrorTypeI; 
 if (fcErrorTypeInformation == etype || fcErrorTypeWarning == etype) 
 { 
  // ok, the function succeeds, but the function wants to give us some 
  // information 
  PrintInfo(e); 
 } 
 else 
 { 
  PrintError(e); 
 } 
} 

4.1.5 fcGetErrorText 

This function returns the corresponding error text for a given error. To free the memory which was 
allocated by this function, please use the function fcFreeMemory with the type fcMemoryTypeString 
(see fcMemoryType). Some text will be generated at runtime to provide a more detailed error description. 

fcError fcGetErrorText( 
 fcError error, 
 char** szText 
); 

Parameters 
error 

[IN] An error value of type fcError for which an error text should be returned. 
szText 

[OUT] Address of a char pointer which holds the address for the generated error text.  

Return values 
If the function succeeds (return value is zero), the parameter szText contains the requested error text. If 
the function fails szText isn’t valid. The fcErrorCode NULL_PARAMETER is returned if the szText 
parameter is a null pointer, TEXT_NOT_DEFINIED if no error text for the given error could be found, or 
MEMORY_ALLOCATION_FAILED to indicate that the memory allocation for the error text failed. 

Example 
fcError e = fcbOpen(&hFlexCard,flexcardId); 
if (fcErrorTypeSuccess != fcGetErrorTypeI) 
{ 
 char* szErrorText = NULL; 
 if (0 == fcGetErrorText(e, &szErrorText)) 
 { 
  // Print the error text and then free up the memory 
  PrintErrorText(szErrorText); 
  fcFreeMemory(fcMemoryTypeString, reinterpret_cast<void*>(szErrorText)); 
 } 
} 

See Also 
fcFreeMemory, fcGetErrorType, fcGetErrorCode 



 

 

Created by STAR ELECTRONICS GmbH & Co. KG   

Date created 2021-10-05 Date modified  2021-10-05 Page 47 of 250 
 

3-
00

0
9-

0
S

01
-D

0
3_

A
P

I 
D

oc
um

en
ta

ti
on

_D
2

V
5

-F
.d

oc
x 

 

4.2 Memory Handling 

As the API allocates memory for you, it has to free up this memory. For this task the API provides the 
function fcFreeMemory which frees only the memory allocated by a function from the API. The reason 
why the API provides this mechanism is that your application may be linked to a different C/C++ run-time 
library than this library. Allocating memory in one module and freeing it in another one (with different run-
time libraries) may fail or cause a run-time error. Another reason for this implementation is that the API can 
use its own memory management in order to reuse the memory blocks. 

4.2.1 Enumerations 

4.2.1.1 fcMemoryType 
This enumeration defines the memory types needed to release the memory allocated by the functions 
fcGetErrorText, fcbGetEnumFlexCards (Obsolete), fcbGetEnumFlexCardsV2 (Obsolete), 
fcbGetEnumFlexCardsV3, fcbGetInfoFlexCard and fcbReceive. 

Typedef enum fcMemoryType 
{ 

fcMemoryTypeString, 
fcMemoryTypeInfo, 
fcMemoryTypePacket, 
fcMemoryTypeInfoV2, 
fcMemoryTypeInfoHwSw, 

} fcMemoryType; 

Members 
fcMemoryTypeString 

Memory is of the type char[] 
fcMemoryTypeInfo 

Memory is of the type fcInfo 
fcMemoryTypePacket 

Memory is of the type fcPacket 
fcMemoryTypeInfoV2 

Memory is of the type fcInfoV2 
fcMemoryTypeInfoHwSw 

Memory is of the type fcInfoHwSw 

See Also 
fcFreeMemory, fcGetErrorText, fcbGetEnumFlexCards (Obsolete), fcbGetEnumFlexCardsV2 
(Obsolete), fcbGetEnumFlexCardsV3, fcbGetInfoFlexCard, fcbReceive 

4.2.2 fcFreeMemory 

This function releases the memory allocated by one of the API functions fcGetErrorText, 
fcbGetEnumFlexCards (Obsolete), fcbGetEnumFlexCardsV2 (Obsolete), 
fcbGetEnumFlexCardsV3, fcbGetInfoFlexCard or fcbReceive. The allocated memory can be used 
as long as necessary. If the connection to the FlexCard is closed, all allocated memory blocks must be 
released with this function. 

fcError fcFreeMemory( 
const fcMemoryType memoryType, 
void* p 

); 

Parameters 
memoryType 

Type of memory to be released. 
P 

Pointer to the memory to be released. 



 

 

Created by STAR ELECTRONICS GmbH & Co. KG   

Date created 2021-10-05 Date modified  2021-10-05 Page 48 of 250 
 

3-
00

0
9-

0
S

01
-D

0
3_

A
P

I 
D

oc
um

en
ta

ti
on

_D
2

V
5

-F
.d

oc
x 

 

Return values 
If the function succeeds, the return value is 0. If the value is <> 0, use the functions described in the section 
Error Handling to get extended error information. The fcErrorCode INVALID_PARAMETER is returned if 
the memoryType parameter wasn’t correct, NULL_PARAMETER if the p parameter is a null pointer. 

Example 
fcError e = fcbOpen(&hFlexCard, flexcardId); 
if (0 != e) 
{ 
 char* szErrorText = NULL; 
 if (0 == fcGetErrorText(e, &szErrorText)) 
 { 
  // Print the error text and then free up the memory 
  PrintErrorText(szErrorText); 
  fcFreeMemory(fcMemoryTypeString, reinterpret_cast<void*>(szErrorText)); 
 } 
} 

See Also 
fcMemoryType, fcGetErrorText, fcbGetEnumFlexCards (Obsolete), fcbGetEnumFlexCardsV2 
(Obsolete), fcbGetEnumFlexCardsV3, fcbGetInfoFlexCard, fcbReceive 

4.3 Initialization 

The following section describes the data structures and features used for initialization. 

4.3.1 Type Definitions 

4.3.1.1 fcHandle  

It defines a handle to a FlexCard object. A handle is returned by the function fcbOpen (assuming that a 
valid FlexCard identifier has been used). 

Typedef void* fcHandle; 

4.3.1.2 fcByte 
Unsigned 8-bit value. 

Typedef unsigned char fcByte; 

4.3.1.3 fcWord 
Unsigned 16-bit value. 

Typedef unsigned short fcWord; 

4.3.1.4 fcDword 

Unsigned 32-bit value. 

Typedef unsigned int fcDword; 

4.3.1.5 fcQuad 
Unsigned 64-bit value. 

Typedef unsigned long long fcQuad; 

4.3.1.6 fcBool 
Boolean value. 

Typedef unsigned char fcBool; 



 

 

Created by STAR ELECTRONICS GmbH & Co. KG   

Date created 2021-10-05 Date modified  2021-10-05 Page 49 of 250 
 

3-
00

0
9-

0
S

01
-D

0
3_

A
P

I 
D

oc
um

en
ta

ti
on

_D
2

V
5

-F
.d

oc
x 

 

4.3.2 Enumerations 

4.3.2.1 fcBusType 
This enumeration defines the available FlexCard bus types. 

Typedef enum fcBusType 
{ 
 fcBusTypeFlexRay = 0, 
 fcBusTypeCAN, 
 fcBusTypeCANFD, 
 fcBusTypeEth, 
 
} fcBusType; 

Members 
fcBusTypeFlexRay 

The FlexRay bus is selected. 
fcBusTypeCAN 

The CAN bus is selected. 
fcBusTypeCANFD 

The CAN-FD bus is selected. 
fcBusTypeEth 

The ethernet bus is selected. 

See Also 
fcVersionCC 

4.3.2.2 fcCC 
This enumeration defines the available FlexCard Communication Controller index depending on the 
communication bus type. 

Typedef enum fcCC 
{ 

fcCC1 = 0x00, 
fcCC2 = 0x01, 
fcCC3 = 0x02, 
fcCC4 = 0x03, 
fcCC5 = 0x04, 
fcCC6 = 0x05, 
fcCC7 = 0x06, 
fcCC8 = 0x07, 

} fcCC; 

Members 
fcCC1 

The Communication Controller 1 is selected. 
fcCC2 

The Communication Controller 2 is selected. 
fcCC3 

The Communication Controller 3 is selected. 
fcCC4 

The Communication Controller 4 is selected. 
fcCC5 

The Communication Controller 5 is selected. 
fcCC6 

The Communication Controller 6 is selected. 
fcCC7 

The Communication Controller 7 is selected. 
fcCC8 

The Communication Controller 8 is selected. 



 

 

Created by STAR ELECTRONICS GmbH & Co. KG   

Date created 2021-10-05 Date modified  2021-10-05 Page 50 of 250 
 

3-
00

0
9-

0
S

01
-D

0
3_

A
P

I 
D

oc
um

en
ta

ti
on

_D
2

V
5

-F
.d

oc
x 

 

4.3.2.3 fcCCType 
This enumeration defines the Communication Controller types supported by the API. The parameter 
CCType of the structure fcVersionCC, which is returned by the functions fcbGetEnumFlexCardsV3, 
indicates the Communication Controller used by the FlexCard. 

Typedef enum fcCCType 
{ 
 Undefined = 0, 
 FreeScale_FPGA, 
 Bosch_E_Ray, 
 Bosch_DCAN, 
 Bosch_M_CAN, 
 Ethernet, 
}fcCCType; 

Members 
Undefined 

Undefined Communication Controller. 
FreeScale_FPGA 

Communication controller is a FreeScale FPGA 
Bosch_E_Ray 

Communication controller is a Bosch E-Ray 
Bosch_DCAN 

Communication controller is a Bosch DCAN 
Bosch_M_CAN 

Communication controller is a Bosch M_CAN 
Ethernet 

Controller is Ethernet controllerSee Also 
fcVersionCC, fcbGetEnumFlexCardsV3 

Remarks 
Current FlexCard hardware (FlexCard PMC (II), FlexCard Cyclone II (SE), FlexCard USB-M) supported by the 
latest driver versions integrate Bosch E-Ray and D-CAN Communication Controllers. 

4.3.2.4 fcFlexCardDeviceId 
This enumeration defines the different FlexCard types. The driver supports the FlexCard products except 
FlexCard PXI (aka FlexCard Cyclone II PXI). 



 

 

Created by STAR ELECTRONICS GmbH & Co. KG   

Date created 2021-10-05 Date modified  2021-10-05 Page 51 of 250 
 

3-
00

0
9-

0
S

01
-D

0
3_

A
P

I 
D

oc
um

en
ta

ti
on

_D
2

V
5

-F
.d

oc
x 

 

Typedef enum fcFlexCardDeviceId 
{ 
 fcNoDevice                        = 0, 
 fcFlexCardCycloneII               = 5, 
 fcFlexCardCycloneIIPXI            = 6, 
 fcFlexCardPMC                     = 7, 
 fcFlexCardCycloneIISE             = 8, 
 fcFlexCardPMCII                   = 9, 
 fcFlexDevice_M_0P01               = 10, 
 fcFlexXConMidgetBinderV1          = 10, 
 fcFlexDevice_M_0P02               = 11, 
 fcFlexXConMidgetBinderV2          = 11, 
 fcFlexDevice_M_0R01               = 12, 
 fcFlexXConMidgetLemo              = 12, 
 fcFlexXConExpert                  = 13, 
 fcFlexCardUSB_M                   = 14, 
 fcFlexCardUSB                     = 14, 
 fcFlexXConCompact                 = 15, 
 frPCIeNGP                         = 16, 
 fcFlexDevice_L_0A01               = 17, 
 fcFlexDevice_L_2SOC_0S01          = 18, 
 fcFlexDevice_L_2SOC_HDSUB_AS_0S01 = 19, 
 fcFlexDevice_L_0A02               = 20, 
 fcFlexDevice_L_2SOC_0S02          = 21, 
 fcFlexDevice_L_2SOC_HDSUB_AS_0S02 = 22, 
 fcFlexDevice_S_0A01               = 23, 
 fcFlexCardPXIe3                   = 24, 
 fcFlexCardPCIe3                   = 25, 
 fcFlexDevice_L_0A03               = 26, 
 fcFlexDevice_L_2SOC_0S03          = 27 
 
} fcFlexCardDeviceId; 

Members 
fcNoDevice 

No FlexCard device was detected. 
fcFlexCardCycloneII 

The device identifier of a FlexCard Cyclone II. 
fcFlexCardCycloneIIPXI 

The device identifier of a FlexCard PXI. 
fcFlexCardPMC 

The device identifier of a FlexCard PMC / PCI. 
fcFlexCardCycloneIISE 

The device identifier of a FlexCard Cyclone II SE. 
fcFlexCardPMCII 

The device identifier of a FlexCard PMC-II. 
fcFlexDevice_M_0P01 

The device identifier of a FlexDevice-M with black case; Layout Version 1.1 
fcFlexXConMidgetBinderV1 

The device identifier of a FlexXCon Midget Binder V1. 
fcFlexDevice_M_0P02 

FlexDevice-M with grey case; Layout Version 2.x; Lemo connectors. 
fcFlexXConMidgetBinderV2 

The device identifier of a FlexXCon Midget Binder V2. 
fcFlexDevice_M_0R01 

The device identifier of a FlexDevice-M with grey case; Layout Version 2.x; Lemo connectors. 
fcFlexXConMidgetLemo 

The device identifier of a FlexXCon Midget Lemo. 
fcFlexXConExpert 

The device identifier of a FlexXCon Expert. 
fcFlexCardUSB_M 

The device identifier of a FlexCard USB-M. 



 

 

Created by STAR ELECTRONICS GmbH & Co. KG   

Date created 2021-10-05 Date modified  2021-10-05 Page 52 of 250 
 

3-
00

0
9-

0
S

01
-D

0
3_

A
P

I 
D

oc
um

en
ta

ti
on

_D
2

V
5

-F
.d

oc
x 

 

fcFlexCardUSB 
The device identifier of a FlexCard USB. 

fcFlexXConCompact 
A ‘FlexXCon Compact’ was detected. 

frPCIeNGP 
A ‘PCIeNGP’ was detected. 

fcFlexDevice_L_0A01 
A ‘FlexDevice-L 0A01’ Revision 1 was detected. 

fcFlexDevice_L_2SOC_0S01 
A ‘FlexDevice-L²’ Revision 1 was detected. 

fcFlexDevice_L_2SOC_HDSUB_AS_0S01 
A ‘FlexDevice-L²’ Revision 1 with HDSUB Connectors was detected. 

fcFlexDevice_L_0A02 
A ‘FlexDevice-L’ Revision 2 was detected. 

fcFlexDevice_L_2SOC_0S02 
A ‘FlexDevice-L²’ Revision 2 was detected. 

fcFlexDevice_L_2SOC_HDSUB_AS_0S02 
A ‘FlexDevice-L²’ Revision 2 with HDSUB Connectors was detected. 

fcFlexDevice_S_0A01 
A ‘FlexDevice-S 0A01’ was detected. 

fcFlexCardPXIe3 
A ‘FlexCard PXIe3’ was detected. 

fcFlexCardPCIe3 
A ‘FlexCard PCIe3’ was detected.  

fcFlexDevice_L_0A03 
A ‘FlexDevice-L 0A03-01’ Revision 3 was detected.  

fcFlexDevice_L_2SOC_0S03 
A ‘FlexDevice-L² 0S03-01’ Revision 3 was detected.  

See Also 
fcInfoHw, fcbGetEnumFlexCardsV3, fcbGetInfoFlexCard 

4.3.2.5 fcTinyType 
This enumeration defines the FlexCard FlexTiny types. The FlexTiny modules are small PCBs that contain 
physical layer components. 



 

 

Created by STAR ELECTRONICS GmbH & Co. KG   

Date created 2021-10-05 Date modified  2021-10-05 Page 53 of 250 
 

3-
00

0
9-

0
S

01
-D

0
3_

A
P

I 
D

oc
um

en
ta

ti
on

_D
2

V
5

-F
.d

oc
x 

 

Typedef enum fcTinyType 
{ 

fcTinyTypeUnknown = 0, 
fcTinyTypeFlexRay, 
fcTinyTypeCAN, 
fcTinyTypeEthernet, 
fcTinyTypeRS232, 
fcTinyTypeCAN_LS, 
fcTinyTypeCAN_HS, 
fcTinyTypeLIN, 
fcTinyTypeK_Line, 
fcTinyTypeFlexRayIso, 
fcTinyTypeCAN_HS_Iso, 
fcTinyTypeCAN_LS_Iso, 
fcTinyTypeLIN_Iso, 
fcTinyTypeRS232_Iso, 
fcTinyTypeCAN_FD, 
fcTinyTypeCAN_FD_Iso, 
fcTinyTypeUSB, 
fcTinyTypeBroadR_Reach, 
fcTinyType100BASE_T1 = fcTinyTypeBroadR_Reach 

}fcTinyType; 

Members 
fcTinyTypeUnknown 
fcTinyTypeFlexRay 
fcTinyTypeCAN 
fcTinyTypeEthernet 
fcTinyTypeRS232 
fcTinyTypeCAN_LS 
fcTinyTypeCAN_HS 
fcTinyTypeLIN 
fcTinyTypeK_Line 
fcTinyTypeFlexRayIso 
fcTinyTypeCAN_HS_Iso 
fcTinyTypeCAN_LS_Iso 
fcTinyTypeLIN_Iso 
fcTinyTypeRS232_Iso 
fcTinyTypeCAN_FD 
fcTinyTypeCAN_FD_Iso 
fcTinyTypeUSB 
fcTinyTypeBroadR_Reach 

The bus type is BroadR-Reach (Automotive Ethernet) 
fcTinyType100BASE_T1 

The bus type is 100BASE-T1 (Automotive Ethernet) 
See Also 

 

4.3.2.6 fcConnector  
This enumeration defines the different connector mappings for the communication controllers. 



 

 

Created by STAR ELECTRONICS GmbH & Co. KG   

Date created 2021-10-05 Date modified  2021-10-05 Page 54 of 250 
 

3-
00

0
9-

0
S

01
-D

0
3_

A
P

I 
D

oc
um

en
ta

ti
on

_D
2

V
5

-F
.d

oc
x 

 

Typedef enum fcConnector 
{ 
 fcConnectorNotSupported, 
 
 fcConnector1A, 
 fcConnector1B, 
 fcConnector1AB, 
 fcConnector1C, 
 fcConnector1D, 
 fcConnector1E, 
 fcConnector1F, 
 fcConnector1G, 
 fcConnector1H, 
 
 fcConnector2A, 
 fcConnector2B, 
 fcConnector2AB, 
 fcConnector2C, 
 fcConnector2D, 
 fcConnector2E, 
 fcConnector2F, 
 fcConnector2G, 
 fcConnector2H, 
 
 fcConnector3A, 
 fcConnector3B, 
 fcConnector3AB, 
 fcConnector3C, 
 fcConnector3D, 
 fcConnector3E, 
 fcConnector3F, 
 fcConnector3G, 
 fcConnector3H, 
 
 fcConnector4A, 
 fcConnector4B, 
 fcConnector4AB, 
 fcConnector4C, 
 fcConnector4D, 
 fcConnector4E, 
 fcConnector4F, 
 fcConnector4G, 
 fcConnector4H, 
 
 fcConnector5A, 
 fcConnector5B, 
 fcConnector5AB, 
 fcConnector5C, 
 fcConnector5D, 
 fcConnector5E, 
 fcConnector5F, 
 fcConnector5G, 
 fcConnector5H, 
 
}fcConnector; 

Members 
fcConnectorNotSupported 

Connector mapping is not supported 
fcConnector1A  

Controller uses connector 1A 
fcConnector1B  

Controller uses connector 1B 
fcConnector1AB  

Controller uses connector 1A and 1B 
fcConnector1C  

Controller uses connector 1C 



 

 

Created by STAR ELECTRONICS GmbH & Co. KG   

Date created 2021-10-05 Date modified  2021-10-05 Page 55 of 250 
 

3-
00

0
9-

0
S

01
-D

0
3_

A
P

I 
D

oc
um

en
ta

ti
on

_D
2

V
5

-F
.d

oc
x 

 

fcConnector1D  
Controller uses connector 1D 

fcConnector1E  
Controller uses connector 1E 

fcConnector1F  
Controller uses connector 1F 

fcConnector1G  
Controller uses connector 1G 

fcConnector1H  
Controller uses connector 1H 

fcConnector2A  
Controller uses connector 2A 

fcConnector2B  
Controller uses connector 2B 

fcConnector2AB  
Controller uses connector 2A and 2B 

fcConnector2C  
Controller uses connector 2C 

fcConnector2D  
Controller uses connector 2D 

fcConnector2E  
Controller uses connector 2E 

fcConnector2F  
Controller uses connector 2F 

fcConnector2G  
Controller uses connector 2G 

fcConnector2H  
Controller uses connector 2H 

fcConnector3A  
Controller uses connector 3A 

fcConnector3B  
Controller uses connector 3B 

fcConnector3AB  
Controller uses connector 3A and 3B 

fcConnector3C  
Controller uses connector 3C 

fcConnector3D  
Controller uses connector 3D 

fcConnector3E  
Controller uses connector 3E 

fcConnector3F  
Controller uses connector 3F 

fcConnector3G  
Controller uses connector 3G 

fcConnector3H  
Controller uses connector 3H 

fcConnector4A 
Controller uses connector 4A 

fcConnector4B 
Controller uses connector 4B 

fcConnector4AB 
Controller uses connector 4A and 4B 

fcConnector4C 
Controller uses connector 4C 

fcConnector4D 
Controller uses connector 4D 

fcConnector4E 



 

 

Created by STAR ELECTRONICS GmbH & Co. KG   

Date created 2021-10-05 Date modified  2021-10-05 Page 56 of 250 
 

3-
00

0
9-

0
S

01
-D

0
3_

A
P

I 
D

oc
um

en
ta

ti
on

_D
2

V
5

-F
.d

oc
x 

 

Controller uses connector 4E 
fcConnector4F 

Controller uses connector 4F 
fcConnector4G 

Controller uses connector 4G 
fcConnector4H 

Controller uses connector 4H 
fcConnector5A  

Controller uses connector 5A 
fcConnector5B  

Controller uses connector 5B 
fcConnector5AB  

Controller uses connector 5A and 5B 
fcConnector5C  

Controller uses connector 5C 
fcConnector5D  

Controller uses connector 5D 
fcConnector5E  

Controller uses connector 5E 
fcConnector5F  

Controller uses connector 5F 
fcConnector5G  

Controller uses connector 5G 
fcConnector5H  

Controller uses connector 5H 

See Also 
fcInfoHw, fcVersionCC 

Remarks 
Only the FlexCard PXIe3, FlexCard PCIe3 and FlexDevice uses the connector mapping. 

4.3.3 Structures 

4.3.3.1 fcNumberCC 

This structure provides information about the available number of Communication Controllers of the 
FlexCard hardware. 

Typedef struct fcNumberCC 
{ 

fcByte FlexRay; 
fcByte CAN; 
fcByte LIN; 
fcByte MOST; 
fcByte FlexRaySelfSync; 
fcByte Ethernet; 
fcByte UartOverCAN; 
fcByte Reserved[1]; 

} fcNumberCC; 



 

 

Created by STAR ELECTRONICS GmbH & Co. KG   

Date created 2021-10-05 Date modified  2021-10-05 Page 57 of 250 
 

3-
00

0
9-

0
S

01
-D

0
3_

A
P

I 
D

oc
um

en
ta

ti
on

_D
2

V
5

-F
.d

oc
x 

 

Members 
FlexRay 

Number of FlexRay Communication Controllers. 
CAN 

Number of CAN Communication Controllers. 
LIN 

Number of LIN Communication Controllers. This parameter is currently not supported. 
MOST 

Number of MOST Communication Controllers. This parameter is currently not supported. 
FlexRaySelfSync 

Number of FlexRay self sync Communication Controllers. 
Ethernet 

Number of Ethernet controllers. 
UARTOverCAN 

Number of UARTOverCAN controllers. 
Reserved 

Reserved for future use. 

See Also 
fcInfoHw, fcbGetNumberCcs, fcbGetInfoFlexCard 

 

 

Information 

This structure is initially supported by FlexCard API version S4V0-F.  

The parameter FlexRaySelfSync is initially supported by version S6V2-F. 

The parameter Ethernet is initially supported by version S6V7-F 

The parameter UARTOverCAN is initially supported by version S6V8-F 

4.3.3.2 fcVersionCC 

This structure provides version information about the available FlexCard Communication Controllers. 



 

 

Created by STAR ELECTRONICS GmbH & Co. KG   

Date created 2021-10-05 Date modified  2021-10-05 Page 58 of 250 
 

3-
00

0
9-

0
S

01
-D

0
3_

A
P

I 
D

oc
um

en
ta

ti
on

_D
2

V
5

-F
.d

oc
x 

 

Typedef struct fcVersionCC 
{ 

fcBusType BusType; 
fcCC CCIndex; 
fcCCType CCType; 
fcVersionNumber CCVersion; 
fcVersionNumber Protocol; 
struct fcVersionCC* pNext; 
fcDword IncorrectPhysicalLayer : 1; 
fcDword FaultTolerantCAN : 1; 
fcConnector ConnectorIndex; 
fcDword Reserved[1]; 
 

} fcVersionCC; 

Members 
BusType 

Communication controller bus type 
CCIndex 

Communication controller identifier 
CCType 

Communication controller type 
CCVersion 

Communication controller version 
Protocol 

Protocol version of the bus type 
pNext 

Pointer to the next CC version. If the pointer is NULL, there are no more CC versions available. 
IncorrectPhysicalLayer 

Physical layer module detection. A value <> 0 indicates a mismatch between Communication 
Controller type and physical layer module. 

FaultTolerantCAN 
Low speed CAN bus detection. A value <> 0 indicates a fault tolerant CAN compatible physical layer 
module. 

ConnectorIndex 
The connector which is used for the controller. This value is only valid for FlexCard PXIe3, FlexCard 
PCIe3 and FlexDevice hardware. 

Reserved 
Reserved for future use 

See Also 
fcInfoHw 

 

 

Information 

This structure is initially supported by FlexCard API version S4V0-F. 

The parameter IncorrectPhysicalLayer is initially supported by version S5V1-F. 

The parameter FaultTolerantCAN is initially supported by version S6V2-F. 

The parameter ConnectorIndex is initially supported by version S6V7-F.  

 

4.3.3.3 fcVersionNumber 
This structure describes the version of a FlexCard component (hardware or software). The function 
fcbGetEnumFlexCardsV3 returns the version numbers for the FlexCard components. 



 

 

Created by STAR ELECTRONICS GmbH & Co. KG   

Date created 2021-10-05 Date modified  2021-10-05 Page 59 of 250 
 

3-
00

0
9-

0
S

01
-D

0
3_

A
P

I 
D

oc
um

en
ta

ti
on

_D
2

V
5

-F
.d

oc
x 

 

Typedef struct fcVersionNumber 
{ 
 fcDword Major; 
 fcDword Minor; 
 fcDword Update; 
 fcDword Release; 
} fcVersionNumber; 

Members 
Major 

An increment indicates a modification which is not downwardly compatible 
Minor 

An increment indicates a light-weight modification 
Update 

Indicates an update (bug fix) for a minor version 
Release 

0 indicates a release version, greater than 0 indicates a test version 

Remarks 
Software version numbers are displayed as SmVn-r, with m = major number, n = minor number, r = release 
number. Released software is displayed with an “F” as release number. In binary values like this struct, the 
“F” is replaced with a zero. Example: S1V2-F may also be displayed as 1.2.0.0. 

See Also 
fcInfoHw, fcInfoSw, fcbGetEnumFlexCardsV3, fcbGetInfoFlexCard 

4.3.3.4 fcInfoHw 

This structure provides information about the hardware components of a FlexCard. 

Typedef struct fcInfoHw 
{ 
 fcQuad Serial; 
 fcFlexCardDeviceId DeviceId; 
 fcVersionNumber VersionFirmware; 
 fcVersionNumber VersionHardware; 
 fcNumberCC SupportedCCs; 
 fcNumberCC LicensedCCs; 
 fcNumberCC UseableCCs; 
 fcVersionCC* pVersionCC; 
 fcDword FullCommunicationControllerAccess; 
 fcDword Reserved[7]; 
} fcInfoHw; 

Members 
Serial 

FlexCard serial number. A zero value indicates a non-valid FlexCard serial number. 
DeviceId 

FlexCard Device ID 
VersionFirmware 

Firmware (gateway software) version 
VersionHardware 

FlexCard hardware version 
SupportedCCs 

Possible FlexCard Communication Controller counts with the hardware. 
LicensedCCs 

Licensed FlexCard Communication Controller counts with the hardware. 
UseableCCs 

Useable FlexCard Communication Controller counts for the software. 
pVersionCC 

Pointer to version information about the useable Communication Controllers. 



 

 

Created by STAR ELECTRONICS GmbH & Co. KG   

Date created 2021-10-05 Date modified  2021-10-05 Page 60 of 250 
 

3-
00

0
9-

0
S

01
-D

0
3_

A
P

I 
D

oc
um

en
ta

ti
on

_D
2

V
5

-F
.d

oc
x 

 

FullCommunicationControllerAccess 
Depending on device base software (e.g FPGA image type) the API has limited access to the 
communication controllers e.g. the FlexCard PXIe3 or FlexCard PCIe3 supports the "FlexDevice 
Mode" and the " FlexCard Mode". If the FlexDevice Mode is active, the value is set to 0 (the 
communication controllers are controlled by the restbus simulation / gateway application from the 
embedded ARM Cortex processor). If the FlexCard Mode is active, the value is set to 1 (the API 
controls the complete communication controller). 

Reserved 
Reserved for future use 

See Also 
fcInfoSw, fcInfoHwSw, fcVersionCC, fcbGetEnumFlexCardsV3, fcbGetInfoFlexCard 
 

 

Information 

This structure is initially supported by FlexCard API version S5V1-F. 

 

4.3.3.5 fcInfoSw 

This structure provides information about the software components of a FlexCard. For correct operation, 
the base driver, the device driver and the firmware should have the same major version number. An 
exception is the FlexCard USB-M, where the base driver and the device driver have completely different 
versions. Refer to the document FlexCard USB-M Instructions for Use to find out what versions should be 
installed. You may use the function fcbCheckVersion to ensure correct component versions. 

Typedef struct fcInfoSw 
{ 
 fcVersionNumber VersionBaseDll; 
 fcVersionNumber VersionDeviceDriver; 
 fcDword LicensedForLinuxDriver : 1; 
 fcDword LicensedForWindowsDriver : 1; 
 fcDword LicensedForXenomaiDriver : 1; 
 fcDword LicensedForLabviewDriver : 1; 
 fcDword Reserved[4]; 
} fcInfoSw; 

Members 
VersionBaseDll 

DLL Base Version. 
VersionDeviceDriver 

Device driver version. 
LicensedForLinuxDriver 

Valid license for FlexCard Linux driver. 
LicensedForWindowsDriver 

Valid license for FlexCard Windows driver. 
LicensedForXenomaiDriver 

Valid license for FlexCard Xenomai driver. 
LicensedForLabviewDriver 

Valid license for FlexCard Labview driver. 
Reserved 

Reserved for future use. 

See Also 
fcInfoHw, fcInfoHwSw, fcbGetEnumFlexCardsV3, fcbGetInfoFlexCard 
 



 

 

Created by STAR ELECTRONICS GmbH & Co. KG   

Date created 2021-10-05 Date modified  2021-10-05 Page 61 of 250 
 

3-
00

0
9-

0
S

01
-D

0
3_

A
P

I 
D

oc
um

en
ta

ti
on

_D
2

V
5

-F
.d

oc
x 

 

 

Information 

This structure is initially supported by FlexCard API version S5V1-F. 

The parameter LicensedForLabviewDriver is initially supported by version S6V1-F. 

4.3.3.6 fcInfoHwSw 
This structure provides information about the components, the identifiers and the current device state of a 
FlexCard. If more than one FlexCard is detected on the system, the fcbGetEnumFlexCardsV3 function 
returns a linked list of this structure; the function fcbGetInfoFlexCard function returns an item of this 
structure. 

Typedef struct fcInfoHwSw 
{ 
 fcDword FlexCardId; 
 fcDword UserDefinedCardId; 
 fcInfoSw InfoSoftware; 
 fcInfoHw InfoHardware; 
 fcDword Busy : 1; 
 struct fcInfoHwSw* pNext; 
 fcDword Reserved[2]; 
} fcInfoHwSw; 

Members 
FlexCardId 

Unique number used to identify a FlexCard. This id is required to open a connection to the FlexCard. 
UserDefinedCardId 

User defined number used to identify a FlexCard. This id is not unique! A zero value indicates a non-
valid or non-existing identifier. 

InfoSoftware 
Information about software components of the FlexCard. 

InfoHardware 
Information about hardware components of the FlexCard. 

Busy 
The current device state. A value <> 0 indicates a connection to this FlexCard is already opened. 

pNext 
Pointer to the next available FlexCard. If no other FlexCard exists, pNext is a null pointer. 

Reserved 
Reserved for future use. 

See Also 
fcInfoHw, fcInfoSw, fcbGetEnumFlexCardsV3, fcbGetInfoFlexCard 
 

 

Information 

This structure is initially supported by FlexCard API version S5V1-F. 

 
 

4.3.3.7 fcTinyInfo 
This structure contains information about a FlexTiny. 

Typedef struct fcTinyInfo 
{ 

fcTinyType TinyType; 
fcDword Reserved; 

} fcTinyInfo; 

Members 
TinyType 

The type of the FlexTiny. 



 

 

Created by STAR ELECTRONICS GmbH & Co. KG   

Date created 2021-10-05 Date modified  2021-10-05 Page 62 of 250 
 

3-
00

0
9-

0
S

01
-D

0
3_

A
P

I 
D

oc
um

en
ta

ti
on

_D
2

V
5

-F
.d

oc
x 

 

Reserved 
Reserved for future use. 

See Also 
 

 

Information 

This structure is initially supported by FlexCard API version S6V6-F. 

 
 

4.3.3.8 fcTinyInfoCollection 

This structure contains information about all the FlexTiny modules that are mounted on a FlexCard. 

Typedef struct fcTinyInfoCollection 
{ 

fcTinyInfo info[255]; 
} fcTinyInfoCollection; 

Members 
info 

Information about the mounted FlexTiny modules. 

See Also 
 

 

Information 

This structure is initially supported by FlexCard API version S6V6-F. 

 
 

4.3.4 fcbGetEnumFlexCardsV3 

This function returns a linked list of the installed FlexCards found on the system. To free the memory, 
which was allocated by this function, please use the function fcFreeMemory with type 
fcMemoryTypeInfoHwSw. 

fcError fcbGetEnumFlexCardsV3( 
 fcInfoHwSw** pInfoHwSw, 
 fcBool getBusyDevices 
) 

Parameters 
pInfoHwSw 

[OUT] linked list of fcInfoHwSw objects 
getBusyDevices 

[IN] Show busy devices in linked list. Set this parameter to 0 to get a linked list of the unused 
FlexCards found on the system. 

Return values 
If the function succeeds, the return value is 0. If the function fails the content of pInfoHwSw is not valid. 
The error code NULL_PARAMETER is returned if pInfoHwSw parameter is a null pointer. If the memory 
allocation fails, the error code MEMORY_ALLOCATION_FAILED is returned. 

Remarks 
If the function succeeds, there will always be one valid fcInfoHwSw structure regardless if there is a FlexCard 
in the system or not. This functionality is given to provide version information about the DLL/library. The 



 

 

Created by STAR ELECTRONICS GmbH & Co. KG   

Date created 2021-10-05 Date modified  2021-10-05 Page 63 of 250 
 

3-
00

0
9-

0
S

01
-D

0
3_

A
P

I 
D

oc
um

en
ta

ti
on

_D
2

V
5

-F
.d

oc
x 

 

version information concerning the hardware is only valid if the identifier (pInfoHwSw->FlexCardId) is not 
0. 
 

 

Information 

This function allocates memory for use. To prevent memory leaks, you have to free it up by calling 
the function fcFreeMemory with the type fcMemoryTypeInfoHwSw. 
 

 

 

Information 

Restriction: FlexCard USB-M devices are only enumerated by this function, if it’s opened with the 
calling application. Devices opened in other applications are not returned in the linked list. 
 

See Also 
fcInfoHwSw 

Example 
// 
// Get the installed FlexCards in the system and print the version numbers 
// 
fcInfoHwSw* pInfoHwSw = NULL; 
fcError e = fcbGetEnumFlexCardsV3(&pInfoHwSw, true); 
if (0 != e) return; // if it fails, return directly 
 
fcInfoHwSw* pLoop = pInfoHwSw; 
while (NULL != pLoop) 
{ 
 // if FlexCard ID is equal to zero, we got NO FlexCard in the system 
 bool bFlexCardAvailable = (0 != pLoop->FlexCardId); 
 
 printf(“\r\nFlexCard ID\t:  “); 
 if (bFlexCardAvailable) printf(“%d\r\n”,pLoop->FlexCardId); 
 else printf(“not available\r\n”); 
  
 // if FlexCard isn’t in use, we print out the version numbers 
 if (bFlexCardAvailable && (0 == pLoop->Busy)) 
 {/*... print out the version numbers ...*/} 
 else printf(“FlexCard is in use\r\n”); 
 
 pLoop = pLoop->pNext; // get the next flexcard 
} 
 
// Don’t forget to free the memory 
fcFreeMemory(fcMemoryTypeInfoHwSw, pInfoHwSw); 

 

 

Information 

This function is initially supported by FlexCard API version S5V1-F. 

 

4.3.5 fcbCheckVersion 

This function checks the version combination of the installed FlexCard driver and firmware. On Windows 
the files fcBase.DLL, fce05xp.SYS / fce052k.SYS and and FCFTBUS.sys are checked. On Linux, flexcard.ko 
and libfcBase.so are checked. This function can only be called after fcbOpen. The major version number of 
the files must be identical when you want to use the FlexCard. An exception is the FlexCard USB-M: With 
this device, the major driver version may differ. Refer to the document FlexCard USB-M Instructions for 
Use to find out what versions should be installed. 

 



 

 

Created by STAR ELECTRONICS GmbH & Co. KG   

Date created 2021-10-05 Date modified  2021-10-05 Page 64 of 250 
 

3-
00

0
9-

0
S

01
-D

0
3_

A
P

I 
D

oc
um

en
ta

ti
on

_D
2

V
5

-F
.d

oc
x 

 

fcError fcbCheckVersion( 
fcHandle hFlexCard 

) 

Parameters 
hFlexCard 

[IN] Handle to a FlexCard. 

Return values 
If the function succeeds, the return value is 0 and the opened FlexCard can be used with the SYS and DLL. 
If the return value is <> 0, use the functions described in the section Error Handling to get extended error 
information and the opened FlexCard cannot be used because of incompatible SYS and DLL versions. 

Example 
fcError e = fcbCheckVersion(hFlexCard); 
if (0 != e) 
{ 
     fcbClose(hFlexCard); 
     // Error handling 
} 

 

 

Information 

This function is initially supported by FlexCard API version S4V0-F. 

 

4.3.6 fcbOpen 

This function opens a connection to a specified FlexCard and returns a handle to this FlexCard. The 
function modifies some Communication Controller registers (e.g. set the Communication Controller in its 
configuration state, fcStateConfig) and all message buffers are configured as receive FIFO buffers with 
maximum payload length.. 

fcError fcbOpen( 
fcHandle* phFlexCard,  
fcDword flexCardId 

) 

Parameters 
phFlexCard 

[OUT] Handle to a specific FlexCard.  
flexCardId 

[IN] Number which indicates the FlexCard you want to use. This identifier is stored in fcInfoHwSw 
objects returned by the function fcbGetEnumFlexCardsV3. Only FlexCardId greater than zero 
are valid FlexCard identifier. 

Return values 
If the function succeeds, phFlexCard holds a valid FlexCard handle and the return value is 0. If the value 
is <> 0, use the functions described in the section Error Handling to get extended error information. 

Remarks 
Use the functions fcbGetEnumFlexCardsV3 to get a valid FlexCardId. The function fcbClose is 
used to close a connection previously opened with fcbOpen. 
 



 

 

Created by STAR ELECTRONICS GmbH & Co. KG   

Date created 2021-10-05 Date modified  2021-10-05 Page 65 of 250 
 

3-
00

0
9-

0
S

01
-D

0
3_

A
P

I 
D

oc
um

en
ta

ti
on

_D
2

V
5

-F
.d

oc
x 

 

 

Information 

If the FlexCard is closed and reopened, all previous (before closing) configuration settings are 
lost. After opening a connection, it is necessary to configure the FlexCard. 

See Also 
fcbGetEnumFlexCardsV3, fcbClose 

Example 
... 
fcInfoHwSw* pInfoHwSw = NULL; 
fcHandle hFlexCard = NULL; 
 
if (0 == fcbGetEnumFlexCardsV3(&pInfoHwSw, true)) 
{ 
 // Open the flexcard using the first flexcard identifier 
 fcError e = fcbOpen(&hFlexCard, pInfoHwSw ->FlexCardId); 
  
 // always free the memory which was allocated by fcbGetEnumFlexCardsV3 
 fcFreeMemory(fcMemoryTypeInfoHwSw, pInfoHwSw); 
 if (0 != e) // handle isn’t valid 
  printErrorI; 
} 
... 

4.3.7 fcbClose 

This function closes the connection to a FlexCard.. 

fcError fcbClose( 
fcHandle hFlexCard 

) 

Parameters 
hFlexCard 

[IN] Handle to a FlexCard 

Return values 
If the function succeeds, the return value is 0. If the value is <> 0, use the functions described in the section 
Error Handling to get extended error information. 

Remarks 
If a monitoring is active, this function will first stop the monitoring and then close the connection. 

See Also 
fcbGetEnumFlexCardsV3, fcbOpen 

Example 
fcError e = fcbClose(hFlexCard); 
if (0 == e) 
{ 
 // This handle isn’t valid anymore 
 hFlexCard = NULL; 
} 

4.3.8 fcbGetInfoFlexCard 

This function returns an item of the structure fcInfoHwSw, which provides information about the 
components, the identifiers and the current device state of the opened FlexCard device. The pointer 



 

 

Created by STAR ELECTRONICS GmbH & Co. KG   

Date created 2021-10-05 Date modified  2021-10-05 Page 66 of 250 
 

3-
00

0
9-

0
S

01
-D

0
3_

A
P

I 
D

oc
um

en
ta

ti
on

_D
2

V
5

-F
.d

oc
x 

 

pNext in the struct fcInfoHwSw is empty. To free the memory which was allocated by this function, 
please use the function fcFreeMemory with type fcMemoryTypeInfoHwSw. 

fcError fcbGetInfoFlexCard( 
fcHandle hFlexCard, 
fcInfoHwSw** pInfoHwSw 

) 

Parameters 
hFlexCard 

[IN] Handle to a FlexCard. 
pInfoHwSw 

[OUT] Hardware and software information of a FlexCard. 

Return values 
If the function succeeds, the return value is 0. If the value is <> 0, use the functions described in the section 
Error Handling to get extended error information. 
 

 

Information 

This function allocates memory for use. To prevent memory leaks, you have to free it up by calling 
the function fcFreeMemory with the type fcMemoryTypeInfoHwSw. 

See Also 
fcbGetEnumFlexCardsV3, fcbOpen, fcInfoHwSw 

Example 
... 
fcInfoHwSw* pInfoHwSw = NULL; 
fcError e = fcbGetInfoFlexCard(hFlexCard, &pInfoHwSw); 
if (0 == e) 
{ 
 // Check open device 
 … 
  
 // always free the memory which was allocated by fcbGetInfoFlexCard 
 fcFreeMemory(fcMemoryTypeInfoHwSw, pInfoHwSw); 
 if (0 != e) // handle isn’t valid 
  printErrorI; 
} 
... 

 

 

Information 

This function is initially supported by FlexCard API version S5V1-F. 

 

4.3.9 fcbSetUserDefinedCardId 

This function writes a persistent user ID to the FlexCard. The ID stays the same even if the device is powered off 
and on. 

fcError fcbSetUserDefinedCardId ( 
fcHandle hFlexCard, 
fcDword UserDefinedCardId 

) 

Parameters 
hFlexCard 

[IN] Handle to a FlexCard. 



 

 

Created by STAR ELECTRONICS GmbH & Co. KG   

Date created 2021-10-05 Date modified  2021-10-05 Page 67 of 250 
 

3-
00

0
9-

0
S

01
-D

0
3_

A
P

I 
D

oc
um

en
ta

ti
on

_D
2

V
5

-F
.d

oc
x 

 

UserDefinedCardId 
[IN] The ID that will be given to the FlexCard. 

Return values 
If the function succeeds, the return value is 0. If the value is <> 0, use the functions described in the section 
Error Handling to get extended error information. 

See Also 
fcbGetUserDefinedCardId 

Example 
fcDword UserDefinedCardId = 0xef000001; 
fcError e = fcbSetUserDefinedCardId (hFlexCard, UserDefinedCardId); 
if (0 != e) 
{ 
// error handling 
} 

 

 

Information 

This function is initially supported by FlexCard API version S5V1-F. 

 

4.3.10 fcbGetUserDefinedCardId 

This function reads the persistent ID from the FlexCard. The ID stays the same even if the device is 
powered off and on. 

fcError fcbGetUserDefinedCardId ( 
fcHandle hFlexCard, 
fcDword* pUserDefinedCardId 

) 

Parameters 
hFlexCard 

[IN] Handle to a FlexCard. 
UserDefinedCardId 

[OUT] The user defined FlexCard ID. 

Return values 
If the function succeeds, the return value is 0. If the value is <> 0, use the functions described in the section 
Error Handling to get extended error information. 

See Also 
fcbSetUserDefinedCardId 

Example 
fcDword UserDefinedCardId = 0x0; 
fcError e = fcbGetUserDefinedCardId (hFlexCard, &UserDefinedCardId); 
if (0 != e) 
{ 

// error handling 
} 
else 
{ 
 printf(“FlexCard UserID: 0x%X“, UserDefinedCardId); 
} 

 



 

 

Created by STAR ELECTRONICS GmbH & Co. KG   

Date created 2021-10-05 Date modified  2021-10-05 Page 68 of 250 
 

3-
00

0
9-

0
S

01
-D

0
3_

A
P

I 
D

oc
um

en
ta

ti
on

_D
2

V
5

-F
.d

oc
x 

 

 

Information 

This function is initially supported by FlexCard API version S5V1-F. 

 

4.3.11 fcbGetTinyInfo 

Gets information about the FlexTiny modules mounted on the FlexCard. Depending on the hardware type 
this is the FlexTiny II or FlexTiny III type. 

fcError fcbGetTinyInfo ( 
fcHandle hFlexCard, 
fcTinyInfoCollection* pTinyInfo, 
fcByte* pNumberOfTinySlots 

) 

Parameters 
hFlexCard 

[IN] Handle to a FlexCard. 
pTinyInfo 

[OUT] This struct contains the FlexTiny information. 
pNumberOfTinySlots 

[OUT] The number of FlexTiny slots that are available on the hardware. The caller must provide 
memory for this parameter.  

Return values 
If the function succeeds, the return value is 0. If the value is <> 0, use the functions described in the section 
Error Handling to get extended error information. 

See Also 
fcTinyInfoCollection 

Example 
fcTinyInfoCollection tinyCollection; 
memset(&tinyCollection, 0, sizeof(tinyCollection)); 
fcByte numberOfTinySlots; 
fcError error = fcbGetTinyInfo(handle, &tinyCollection, &numberOfTinySlots); 
if (0 == error) 
{ 
    for(int i = 0; i < numberOfTinySlots; i++) 
    { 
        printf(“Tiny index: %u, type: %u\n”, i, tinyCollection.info[i].TinyType); 
    }  
} 

 

 

Information 

This function is not available for FlexCard Cyclone II (SE) and FlexCard USB-M. 

This function is initially supported by FlexCard API version S6V6-F. 

4.3.12 fcbSetGlobalConfig 

Sets global config parameters which can be used by the API during its livetime (only optional!). Global 
parameters should always be set first. Before even starting initialization with fcbGetEnumFlexCardsV3. All 
global parameters consist of a key and a value, pass both to the function to set a parameter. For each 
parameter the function must be called. If this function is not called, default parameters are used. 

 



 

 

Created by STAR ELECTRONICS GmbH & Co. KG   

Date created 2021-10-05 Date modified  2021-10-05 Page 69 of 250 
 

3-
00

0
9-

0
S

01
-D

0
3_

A
P

I 
D

oc
um

en
ta

ti
on

_D
2

V
5

-F
.d

oc
x 

 

fcError fcbSetGlobalConfig( 
const char* key, 
char* value 

) 

Parameters 
key 

[IN] Describes key of config parameter. (terminated c-string!) 
value 

[IN] Describes value of config parameter. (terminated c-string!) 

List of Global Parameters 
Possible key-value pairs that together form a global parameter are listed below: 

Key Value 
„HwComAddress“  Unicast or Broadcast address for 

finding FlexDevices. (e.g. 
“192.168.1.15” or “192.168.1.255”) 

„TargetIPv4“  Unicast or Multicast address where 
FlexDevices sends analyzing data to. 
Most of the time the current PC. (e.g. 
“192.168.1.10”) 

“AnalyzerConfigVersion“  Version oft the Analyzer Config 
Command (1 byte)(HwCom Analyzing) 

“DataInterval“  Maximum Interval of Container 
Messages. (2 byte)(HwCom Analyzing) 

“StatisticInterval“ Interval of Statistic Messages (2 
byte)(HwCom Analyzing) 

”ThresholdSize“  Maximum size of Container Payload (2 
byte)(HwCom Analyzing) 

“TransportProtocol“  Used Transport Protocol (1 
byte)(HwCom Analyzing) 

“ProtocolFormat“  Used Protocol Format (1 byte)(HwCom 
Analyzing) 

“TargetPort“  Target Port (2 byte)(HwCom 
Analyzing) 

“TargetType“  Target Type Unicast/Multicast (2 
byte)(HwCom Analyzing) 

Return values 
If the function succeeds, the return value is 0. If the value is <> 0, use the functions described in the section 
Error Handling to get extended error information. 

Example 
fcError error = fcbSetGlobalConfig(“hwComAddress”, “192.168.2.255”); 
if(error != 0) return; 
error = fcbSetGlobalConfig(“TargetIPv4”, “192.168.2.10”); 
if(error != 0) return; 
error = fcbSetGlobalConfig(“TransportProtocol”, “2”); // UDP 
if(error != 0) return; 
 

 

Information 

This function is initially supported by FlexCard API version S6V7-F. 

 
 



 

 

Created by STAR ELECTRONICS GmbH & Co. KG   

Date created 2021-10-05 Date modified  2021-10-05 Page 70 of 250 
 

3-
00

0
9-

0
S

01
-D

0
3_

A
P

I 
D

oc
um

en
ta

ti
on

_D
2

V
5

-F
.d

oc
x 

 

4.4 Configuration 

4.4.1 Enumerations 

4.4.1.1 fcTimeStampSourceMode 
This enumeration defines the modes available for the time stamp clock source configuration of the 
FlexCard hardware. 

Typedef enum fcTimeStampSourceMode 
{ 

fcTimeStampModeDefault = 0, 
fcTimeStampModeTriggerIn, 
fcTimeStampModeUserIo, 
fcTimeStampModePxiClock10, 

} fcTimeStampSourceMode; 

Members 
fcTimeStampModeDefault 

The internal 1 MHz timestamp clock is used which results in a resolution of 1 µs. 
fcTimeStampModeTriggerIn 

The trigger in line is used to generate the time stamp. Time stamp resolution depends on the frequency 
at the configured trigger line. For example, if the external clock is1 MHz, 10 MHz or 100 MHz, the 
timestamp is in units of 1 µs, 100 ns or 10 ns. 

fcTimeStampModeUserIo 
For FlexCard PMC-II. The PMC UserIo lines are used to control the FlexCard timestamp. UserIo pin 63 
is used to increment the timestamp and UserIo pin 64 is used to reset it. For example, if the external 
clock is1 MHz, 10 MHz or 100 MHz, the timestamp is in units of 1 µs, 100 ns or 10 ns. 

fcTimeStampModePxiClock10 
For FlexCard PXIe3. PXI CLOCK 10 is used to increment the timestamp and PXI TRIGGER 0 is used to 
reset the timestamp value. The device only reacts to PXI TRIGGER 0 if the timestamp source is set to 
this value. The timestamp value is synchronized to PXI CLOCK 10 and increments with microsecond 
resolution. That means, after ten pxi clock ticks the FlexCard timestamp makes one tick. PXI TRIGGER 
0 is a 0..5V signal with a pullup resistor on the pxi rack backplane. When the signal is 0, the FlexCard 
timestamp is zero. After a positive edge on the signal, the FlexCard timestamp starts to increment. 

See Also 
fcTimeStampCfg 

 

 

Information 

With fcTimeStampModeTriggerIn and fcTimeStampModeUserIo the FlexCards time stamp doesn’t 
represent a real time. It’s a clock counter value. All received packets (member TimeStamp) and 
the FlexCards time stamp itself (fcbGetCurrentTimeStamp, 
fcbGetCurrentHighResTimeStamp) must be translated to the expected time by the user 
application. 

 

 

Information 

This enumeration is initially supported by FlexCard API version S6V2-F. 

 

4.4.2 Structures 

4.4.2.1 fcTimeStampCfg 

This structure defines the time stamp configuration of the FlexCard. Default configuration uses the internal 
FlexCard time stamp (1 µs resolution). 



 

 

Created by STAR ELECTRONICS GmbH & Co. KG   

Date created 2021-10-05 Date modified  2021-10-05 Page 71 of 250 
 

3-
00

0
9-

0
S

01
-D

0
3_

A
P

I 
D

oc
um

en
ta

ti
on

_D
2

V
5

-F
.d

oc
x 

 

Typedef struct fcTimeStampCfg 
{ 

fcTimeStampSourceMode mode; 
fcDword Reserved1; 
union 
{ 
 fcDword TriggerLine; 
 fcDword Reserved[2]; 
} AdditionalCfg; 
fcDword Reserved2[4]; 

} fcTimeStampCfg; 

Members 
mode 

Time stamp clock source mode 
Reserved1 

Reserved for future use 
AdditionalCfg 

• TriggerLine 
For FlexCard PMC, FlexCard PMC-II, FlexCard PXIe3, FlexCard PCIe3. The trigger line number used 
for external time stamp generation. Valid values range from 1 to 2.  

• Reserved 
Reserved for architecture compatibility 

Reserved2 
Reserved for future use 

See Also 
fcTimeStampSourceMode 

 

 

Information 

This structure is initially supported by FlexCard API version S6V2-F. 

 

4.4.3 fcbReinitializeCcMessageBuffer 

This function re-initializes the message buffer configuration of the specified bus type and Communication 
Controller index. After calling this function the Communication Controller does not send old payload data. 
Re-initialization of message buffers is only allowed if the Communication Controller is in configuration 
state. Currently this function only supports the bus type fcBusTypeFlexRay. 

fcError fcbReinitializeCcMessageBuffer( 
fcHandle hFlexCard, 
fcBusType BusType, 
fcCC CC 

) 

Paramaters 
hFlexCard 

[IN] Handle to a FlexCard 
BusType 

[IN] The bus type. 
CC 

[IN] Index of the Communication Controller. 

Return values 
If the function succeeds, the return value is 0. If the value is <> 0, use the functions described in the section 
Error Handling to get extended error information. 



 

 

Created by STAR ELECTRONICS GmbH & Co. KG   

Date created 2021-10-05 Date modified  2021-10-05 Page 72 of 250 
 

3-
00

0
9-

0
S

01
-D

0
3_

A
P

I 
D

oc
um

en
ta

ti
on

_D
2

V
5

-F
.d

oc
x 

 

Example 
// FlexRay network running, FlexCard is sending data 
 
// monitoring is stopped, e.g. because of user interaction 
fcbFRMonitoringStop(hFlexCard,eCC); 
 
fcError e = fcbReinitializeCcMessageBuffer(hFlexCard, fcBusTypeFlexRay, eCC); 
if (0 == e)  
{ 

// error handling 
} 
 
// fcbReinitializeCcMessageBuffer ist not needed when calling 
// fcbFRSetCcConfiguration, fcbFRSetCcConfigurationChi or  
// fcbFRConfigureMessageBuffer before MonitoringStart 
 
fcError e = fcbFRMonitoringStart(hFlexCard,eCC,fcMonitoringNormal,true, 
        false,false,false); 
if (0 == e)  
{ 

// error handling 
} 
 
// now the CC does not send data from the previous monitoring 

 

 

Information 

This function is initially supported by FlexCard API version S4V0-F. 

 

4.4.4 fcbGetNumberCcs 

This function reads the number of the various Communication Controllers which are available on the 
FlexCard. 

fcError fcbGetNumberCcs( 
 fcHandle hFlexCard, 
 fcNumberCC* pNumberCC 
) 

Parameters 
hFlexCard 

[IN] Handle to a FlexCard. 
pNumberCC 

[OUT] Pointer to the structure of the available Communication Controller numbers. 

Return values 
If the function succeeds, the return value is 0. If the value is <> 0, use the functions described in the section 
Error Handling to get extended error information. 

Example 
fcNumberCC numberCC; 
fcError e = fcbGetNumberCcs(hFlexCard, &numberCC); 
if (0 == e) 
{ 
 printf(“Communication controllers: FlexRay: %d, FlexRay SelfSync: %d, CAN: %d, 
LIN: %d, MOST: %d”, numberCC.FlexRay, numberCC.FlexRaySelfSync, numberCC.CAN, 
numberCC.LIN, numberCC.MOST); 
} 
 

See Also 
fcNumberCC 



 

 

Created by STAR ELECTRONICS GmbH & Co. KG   

Date created 2021-10-05 Date modified  2021-10-05 Page 73 of 250 
 

3-
00

0
9-

0
S

01
-D

0
3_

A
P

I 
D

oc
um

en
ta

ti
on

_D
2

V
5

-F
.d

oc
x 

 

 

 

Information 

This function is initially supported by FlexCard API version S4V0-F. 

 

4.4.5 fcbSetContinueOnPacketOverflow 

This function configures the packet overflow handling of the FlexCard. The FlexCards default behavior is to 
stop the monitoring if a data overflow was detected. This is the case, when the application receives the 
data too slowly. This function can configure the FlexCard to continue with the monitoring when an amount 
of free RAM space is available again. An error packet fcErrFlexCardOverflow is generated in both cases. 

fcError fcbSetContinueOnPacketOverflow( 
 fcHandle hFlexCard, 
 fcBool bContinue 
) 

Parameters 
hFlexCard 

[IN] Handle to a FlexCard. 
bContinue 

[IN] Set this flag to <> 0 to continue the monitoring in case of a packet buffer overflow being 
detected when RAM space is available again. Set to 0 to stop the monitoring. 

Return values 
If the function succeeds, the return value is 0. If the value is <> 0, use the functions described in the section 
Error Handling to get extended error information. 

Example 
// Configure the FlexCard to continue on a data overflow  
fcError e = fcbSetContinueOnPacketOverflow (hFlexCard, true); 
if (0 == e) 
{ 
 printf(“FlexCard will continue receiving after a data overflow.”); 
} 
 

 

Information 

This function is initially supported by FlexCard API version S4V0-F. 

 

4.4.6 fcbGetCurrentTimeStamp 

This function returns the current time stamp of the FlexCard device and the correlated performance 
counter value of the operating system. The unit of the timestamp depends on the timestamp configuration 
that is done with fcbConfigureFlexCardTimeStamp. Details about 32/64 bit timestamps and timestamp 
units can be found there. fcbGetCurrentTimeStamp returns the 32 bit hardware timestamp. 

 

fcError fcbGetCurrentTimeStamp( 
fcHandle hFlexCard, 
fcDword* pTimeStamp, 
fcQuad* pPerformanceCounter 

) 

Parameters 
hFlexCard 

[IN] Handle to a FlexCard 



 

 

Created by STAR ELECTRONICS GmbH & Co. KG   

Date created 2021-10-05 Date modified  2021-10-05 Page 74 of 250 
 

3-
00

0
9-

0
S

01
-D

0
3_

A
P

I 
D

oc
um

en
ta

ti
on

_D
2

V
5

-F
.d

oc
x 

 

pTimeStamp 
[OUT] Current 32 bit time stamp 

pPerformanceCounter 
[OUT] Correlated performance counter 

Return values 
If the function succeeds, the return value is 0. If the value is <> 0, use the functions described in the section 
Error Handling to get extended error information. 

See Also 
fcQuad 

 

 

Information 

This function is initially supported by FlexCard API version S4V0-F. 

 

4.4.7 fcbResetTimestamp 

This function sets the FlexCard timestamp to 0. 

fcError fcbResetTimestamp ( 
 fcHandle hFlexCard 
) 

Parameters 
hFlexCard 

[IN] Handle to a FlexCard. 

Return values 
If the function succeeds, the return value is 0. If the value is <> 0, use the functions described in the section 
Error Handling to get extended error information. 

Example 
fcError e = fcbResetTimestamp(hFlexCard); 
if (0 == e) 
{ 
 printf(“Timestamp was reset.”); 
} 

 

 

Information 

This function is initially supported by FlexCard API version S4V0-F. 

 

4.4.8 fcbConfigureFlexCardTimeStamp 

This function configures the FlexCards time stamp. By default the FlexCard uses an internal clock (1 MHz) 
to generate a time stamp with 1 µs resolution. This function cannot be used with FlexCard Cyclone II (SE) 
devices. 

The FlexCard Firmware runs with a 64 bit timestamp. Certain API functions return the full 64 bit timestamp, 
others return only the lower 32 bits of the 64 bit timestamp. fcbGetCurrentTimeStamp and most of the 
packets returned by fcbReceive (member TimeStamp) contain the 32 bit timestamp. 
fcbGetCurrentHighResTimeStamp and some packets returned by fcbReceive return the 64 bit timestamp. 

See the description of fcTimeStampCfg and fcTimeStampSourceMode for details. 



 

 

Created by STAR ELECTRONICS GmbH & Co. KG   

Date created 2021-10-05 Date modified  2021-10-05 Page 75 of 250 
 

3-
00

0
9-

0
S

01
-D

0
3_

A
P

I 
D

oc
um

en
ta

ti
on

_D
2

V
5

-F
.d

oc
x 

 

fcError fcbConfigureFlexCardTimeStamp( 
fcHandle hFlexCard, 
fcTimeStampCfg cfg 

) 

Parameters 
hFlexCard 

[IN] Handle to a FlexCard 
cfg 

[IN] The time stamp configuration 

Return values 
If the function succeeds, the return value is 0. If the value is <> 0, use the functions described in the section 
Error Handling to get extended error information. 

See Also 
fcTimeStampSourceMode, fcTimeStampCfg 

 

 

Information 

This function is initially supported by FlexCard API version S6V2-F. 

 

4.4.9 fcbGetCurrentHighResTimeStamp 

This function returns the current high resolution time stamp of the FlexCard device and the correlated 
performance counter value of the operating system. The unit of the timestamp depends on the timestamp 
configuration that is done with fcbConfigureFlexCardTimeStamp. Details about 32/64 bit timestamps and 
timestamp units can be found there. fcbGetCurrentHighResTimeStamp returns the 64 bit hardware 
timestamp. 

fcError fcbGetCurrentHighResTimeStamp( 
fcHandle hFlexCard, 
fcQuad* pTimeStamp, 
fcQuad* pPerformanceCounter 

) 

Parameters 
hFlexCard 

[IN] Handle to a FlexCard 
pTimeStamp 

[OUT] Current 64 bit time stamp 
pPerformanceCounter 

[OUT] Correlated performance counter 

Return values 
If the function succeeds, the return value is 0. If the value is <> 0, use the functions described in the section 
Error Handling to get extended error information. 

See Also 
fcQuad 

 



 

 

Created by STAR ELECTRONICS GmbH & Co. KG   

Date created 2021-10-05 Date modified  2021-10-05 Page 76 of 250 
 

3-
00

0
9-

0
S

01
-D

0
3_

A
P

I 
D

oc
um

en
ta

ti
on

_D
2

V
5

-F
.d

oc
x 

 

 

Information 

This function is initially supported by FlexCard API version S6V2-F. 

 

4.5 Event 

4.5.1 Enumerations 

4.5.1.1 fcNotificationType 
This enumeration defines different notification types. These types are used in the functions 
fcbSetEventHandleV2, fcbSetEventHandleSemaphore or fcbWaitForEventV2 to specify on which 
kind of event the application has to be notified. 

Typedef enum fcNotificationType 
{ 

fcNotificationTypeCycleStarted       = 1, 
fcNotificationTypeFRCycleStarted     = fcNotificationTypeCycleStarted, 
fcNotificationTypeTimer              = 2, 
fcNotificationTypeWakeup             = 3, 
fcNotificationTypeFRWakeup           = fcNotificationTypeWakeup, 
fcNotificationTypeCcTimer            = 12, 
fcNotificationTypeFRCcTimer          = fcNotificationTypeCcTimer, 
fcNotificationTypeSurpriseRemoval    = 13, 
fcNotificationTypeStandby            = 14, 
fcNotificationTypeReceiveBufferLevel = 15, 

} fcNotifyType, fcNotificationType; 

Members 
fcNotificationTypeCycleStarted 
fcNotificationTypeFRCycleStarted 

Used to notify that a new cycle has started and that probably new data has been received. 
fcNotificationTypeTimer 

Used to notify that the timer interval has elapsed. This notification requires the internal timer of the 
FlexCard to be enabled (See fcbSetTimer). 

fcNotificationTypeWakeup 
fcNotificationTypeFRWakeup 

Used to notify that one of the transceivers has received a wake-up event (only if one of the transceivers 
was in sleep mode). 

fcNotificationTypeCcTimer 
fcNotificationTypeFRCcTimer 

Used to notify that the configured CC timer macrotick offset has elapsed. This notification requires 
the E-Ray CC Timer0 to be enabled (See fcbFRSetCcTimerConfig). 

fcNotificationTypeSurpriseRemoval 
fcNotificationTypeStandby 

For internal use only. 
fcNotificationTypeReceiveBufferLevel 

Used to notify that the configured FlexCard receive buffer filling level has reached (See 
fcbSetReceiveBufferLevelNotification). 

See Also 
fcbFRMonitoringStart, fcbSetEventHandleV2, fcbSetEventHandleSemaphore, fcbSetTimer, 
fcbFRSetCcTimerConfig, fcbWaitForEventV2, fcbSetReceiveBufferLevelNotification 

4.5.2 fcbSetEventHandleV2 

This function registers an event handle for a specific notification type. 



 

 

Created by STAR ELECTRONICS GmbH & Co. KG   

Date created 2021-10-05 Date modified  2021-10-05 Page 77 of 250 
 

3-
00

0
9-

0
S

01
-D

0
3_

A
P

I 
D

oc
um

en
ta

ti
on

_D
2

V
5

-F
.d

oc
x 

 

fcError fcbSetEventHandleV2( 
fcHandle hFlexCard, 
fcCC CC, 
fcHandle hEvent, 
fcNotificationType type 

) 

Parameters 
hFlexCard 

[IN] Handle to a FlexCard 
CC 

[IN] Communication controller index 
hEvent 

[IN] Event handle to be registered to signal when a new cycle starts, a timer interval has elapsed or 
the FlexCard receive buffer reaches a specific filling level depending on the given type. 

Type 
[IN] The notification type for which the event must be registered. 

Return values 
If the function succeeds, the return value is 0. If the value is <> 0, use the functions described in the section 
Error Handling to get extended error information. 

See Also 
fcNotificationType 

Example 
// Create the event objects 
HANDLE hCycleStartEvent = ::CreateEvent(NULL,FALSE,FALSE,NULL); 
fcCC eCC = fcCC1; 
 
// Register our event handles 
fcbSetEventHandleV2(hFlexCard, eCC, hCycleStartEvent, 
   fcNotificationTypeFRCycleStarted); 
 
// ... 
// Use the event objects 
// ... 

 

 

Information 

This function is initially supported by FlexCard API version S4V2-F. 

 
 

 

Information 

This function is not supported by the FlexCard USB-M. 

 
 



 

 

Created by STAR ELECTRONICS GmbH & Co. KG   

Date created 2021-10-05 Date modified  2021-10-05 Page 78 of 250 
 

3-
00

0
9-

0
S

01
-D

0
3_

A
P

I 
D

oc
um

en
ta

ti
on

_D
2

V
5

-F
.d

oc
x 

 

 

Information 

Please don’t use this function with the FlexCard Linux driver, because it’s not async-signal safe. 
To avoid deadlocks with the API use the function fcbSetEventHandleSemaphore instead. 

On Xenomai, use the function fcbWaitForEventV2. 

4.5.3 fcbSetTimer 

This function enables or disables the internal FlexCard timer. To become notified when the timer interval 
has elapsed, an event of type fcNotificationTypeTimer has to be registered by the function 
fcbSetEventHandleV2, fcbSetEventHandleSemaphore or fcbWaitForEventV2. 

fcError fcbSetTimer( 
fcHandle hFlexCard, 
fcBool enable, 
fcDword timerInterval 

) 

Parameters 
hFlexCard 

[IN] Handle to a FlexCard 
enable 

[IN] Set to <> 0 to enable the timer and to 0 to disable it. 
timerInterval 

[IN] Specifies the timer period in µs 

Return values 
If the function succeeds, the return value is 0. If the value is <> 0, use the functions described in the section 
Error Handling to get extended error information. 

See Also 
fcNotificationType, fcbSetEventHandleV2, fcbSetEventHandleSemaphore, 
fcbWaitForEventV2 

Example 
// Create the event objects 
HANDLE hCycleStartEvent = ::CreateEvent(NULL,FALSE,FALSE,NULL); 
HANDLE hTimerEvent = ::CreateEvent(NULL,FALSE,FALSE,NULL); 
fcCC eCC = fcCC1; 
 
// Register our event handles 
fcbSetEventHandleV2(hFlexCard, eCC, hCycleStartEvent, 
   fcNotificationTypeCycleStarted); 
fcbSetEventHandleV2(hFlexCard, eCC, hTimerEvent, fcNotificationTypeTimer); 
 
// Enable the timer (1ms Interval) 
fcbSetTimer(hFlexCard,true,1000); 
 
// ... 
// Use the event objects 
// ... 

4.5.4 fcbNotificationPacket 

This function generates a notification packet each time the configured timer timeout has elapsed. This 
timer can be enabled / disabled by this function and the timeout can be set. The notification packets are 
inserted in the stream and received through the function fcbReceive. 



 

 

Created by STAR ELECTRONICS GmbH & Co. KG   

Date created 2021-10-05 Date modified  2021-10-05 Page 79 of 250 
 

3-
00

0
9-

0
S

01
-D

0
3_

A
P

I 
D

oc
um

en
ta

ti
on

_D
2

V
5

-F
.d

oc
x 

 

fcError fcbNotificationPacket( 
fcHandle hFlexCard, 
fcBool enable, 
fcDword timerInterval 

) 

Parameters 
hFlexCard 

[IN] Handle to a FlexCard 
enable 

[IN] Set to <> 0 to enable the timer and to 0 to disable it. 
timerInterval 

[IN] Specifies the time-out interval, in microseconds. A packet is generated as soon as the time-out 
has elapsed. The timer interval must be greater than 50µs and smaller than 655350µs. The value must 
be rounded to 10µs units. 

Return values 
If the function succeeds, the return value is 0. If the value is <> 0, use the functions described in the 
section Error Handling to get extended error information. 
 

 

Information 

This function is initially supported by FlexCard API version S2V0-F. 

 

4.5.5 fcbSetReceiveBufferLevelNotification 

This function enables or disables the FlexCard receive buffer level notification. To become notified, when 
the receive buffer reaches the filling level, an event of type 
fcNotificationTypeReceiveBufferLevel has to be registered by one of the functions 
fcbSetEventHandleV2, fcbSetEventHandleSemaphore or fcbWaitForEventV2. 

IMPORTANT: This function currently does not work! 

fcError fcbSetReceiveBufferLevelNotification( 
fcHandle hFlexCard, 
fcBool enable, 
fcDword percentage 

) 

Parameters 
hFlexCard 

[IN] Handle to a FlexCard 
enable 

[IN] Set to 0 to disable the receive buffer level notification, a value <> 0 enables the notification. 
Percentage 

[IN] Specifies the percentage filling level of the FlexCard receive buffer. 

Return values 
If the function succeeds, the return value is 0. If the value is <> 0, use the functions described in the 
section Error Handling to get extended error information.  
 



 

 

Created by STAR ELECTRONICS GmbH & Co. KG   

Date created 2021-10-05 Date modified  2021-10-05 Page 80 of 250 
 

3-
00

0
9-

0
S

01
-D

0
3_

A
P

I 
D

oc
um

en
ta

ti
on

_D
2

V
5

-F
.d

oc
x 

 

 

Information 

This function is initially supported by FlexCard API version S6V1-F. 

 

4.6 Receive 

4.6.1 Typedefinitions 

4.6.1.1 fcInfoPacket 
This structure describes an information packet. This packet type informs you about the start of a new 
cycle. All packets received between two consecutives info packets are part of the current cycle. 

Typedef struct fcInfoPacket 
{ 
    fcDword CurrentCycle;  
    fcDword TimeStamp; 
    fcDword RateCorrection : 12; 
    fcDword OffsetCorrection : 19; 
    fcDword ClockCorrectionFailedCounter : 4; 
    fcDword PassiveToActiveCount : 5; 
    fcCC    CC; 
}fcInfoPacket; 

Members 
CurrentCycle 

The current cycle (FlexRay Protocol Specification: vRF!Header!CycleCount)  
Timestamp 

The FlexCard timestamp (per default 1 µs resolution). The timestamp marks the point in time where 
the FlexCard detects the internal FlexRay cycle start interrupt. The event 
fcNotificationTypeFRCycleStarted does not have to be configured to receive the timestamp. 

RateCorrection 
Rate correction value (two’s complement). Indicates by how many microticks the node’s cycle length 
should be changed. 

OffsetCorrection 
Offset correction value (two’ complement). Indicates the number of microticks that are added to the 
offset correction segment of the network idle time. 

ClockCorrectionFailedCounter 
FlexRay Protocol Specification: vClockCorrectionFailed. 

PassiveToActiveCount 
FlexRay Protocol Specification: vAllowPassiveToActive 

CC 
The FlexCard CC which created this packet. This parameter will always be set to fcCC1 if only one 
FlexRay CC is available. 

Remarks 
A timestamp overflow occurs after approximately 4295 seconds. 

See Also 
fcPacket 

4.6.1.2 fcFlexRayFrame  
This structure is equivalent to the FlexRay frame described in the FlexRay specification [3].  



 

 

Created by STAR ELECTRONICS GmbH & Co. KG   

Date created 2021-10-05 Date modified  2021-10-05 Page 81 of 250 
 

3-
00

0
9-

0
S

01
-D

0
3_

A
P

I 
D

oc
um

en
ta

ti
on

_D
2

V
5

-F
.d

oc
x 

 

Typedef struct fcFlexRayFrame 
{ 
    fcDword ID : 11; 
    fcDword STARTUP : 1; 
    fcDword SYNC : 1; 
    fcDword NF : 1; 
    fcDword PP : 1; 
    fcDword R : 1; 
    fcDword PayloadLength : 7; 
    fcDword CycleCount : 6; 
    fcDword HeaderCRC : 11; 
    fcWord* pData; 
 
    fcChannel Channel; 
    fcDword ValidFrame : 1; 
    fcDword SyntaxError : 1;  
    fcDword ContentError : 1;  
    fcDword SlotBoundaryViolation : 1; 
    fcDword AsyncMode : 1; 
    fcDword FrameCRC : 24; 
 
    fcDword TimeStamp; 
    fcCC    CC; 
} fcFlexRayFrame; 

Members 
ID 

The frame id defines the slot in which the frame was transmitted.  
(FlexRay Protocol Specification: vRF!Header!FrameID) 

STARTUP 
Indicates if the frame is a start-up frame (=1) or not (=0)  
(FlexRay Protocol Specification: vRF!Header!SuFIndicator) 

SYNC 
Indicates if the frame is a sync frame (=1) or not (=0)  
(FlexRay Protocol Specification: vRF!Header!SyFIndicator) 

NF  
Set to 0, the null frame indicator indicates that pData contains no valid data. Set to 1, it indicates 
that pData contains valid data.  
(FlexRay Protocol Specification: vRF!Header!NFIndicator) 

PP 
The payload preamble indicator indicates whether or not an optional vector is contained within the 
payload segment of the frame transmitted. In the static segment, it indicates the presence of a 
network management vector at the beginning of the payload. In the dynamic segment it indicates the 
presence of a message id at the beginning of the payload, (FlexRay Protocol Specification: 
vRF!Header!PPIndicator). 

R 
Reserved Bit (FlexRay Protocol Specification: vRF!Header!Reserved)  

PayloadLength 
Defines the number of 16-bit words contained in pData  
(FlexRay Protocol Specification: vRF!Header!Length) 

CycleCount 
The cycle in which the frame was received. (FlexRay Protocol Specification: 
vRF!Header!CycleCount) 

HeaderCRC 
The header CRC containing the cyclic redundancy check code is computed over the sync frame 
indicator, the start-up frame indicator, the frame id and the payload length.(FlexRay Protocol 
Specification: vRF!Header!HeaderCRC) 

pData 
The pointer to the payload data. The payload is given in 16-bit words. 
(FlexRay Protocol Specification: vRF!Payload) 
 



 

 

Created by STAR ELECTRONICS GmbH & Co. KG   

Date created 2021-10-05 Date modified  2021-10-05 Page 82 of 250 
 

3-
00

0
9-

0
S

01
-D

0
3_

A
P

I 
D

oc
um

en
ta

ti
on

_D
2

V
5

-F
.d

oc
x 

 

If Data0 is the first byte that was received and Data1 the second byte received, then the high byte (Bit 
8 – 15) of payload[0] contains Data1, the low byte (Bit 0-7) of payload[0] contains Data0, etc. 

Parameter data data[0] (Word 0) data[1] (Word 1) … 
High byte Low byte High byte Low byte … 

FlexRay payload segment Data 1 Data 0 Data 3 Data 2 … 
 

Channel 
The channel (A or B) on which the frame was received.  
(FlexRay Protocol Specification: vRF!Channel) 

ValidFrame 
If a valid frame was received, this parameter is set to 1 (FlexRay Protocol Specification: 
vSS!ValidFrameA or vSS!ValidFrameB depends on Channel  - Table 9-2: Slot status interpretation) 

SyntaxError 
If a syntax error was observed, this parameter is set to 1 (frame is syntactically incorrect). (FlexRay 
Protocol Specification: vSS!SyntaxErrorA or vSS!SyntaxErrorB depends on Channel) 

ContentError 
If a content error was observed, this parameter is set to 1 (frame is semantically incorrect). (FlexRay 
Protocol Specification: vSS!ContentErrorA or vSS!ContentErrorB depends on Channel) 

SlotBoundaryViolation 
If a slot boundary violation was observed, this parameter is set to 1 (FlexRay Protocol Specification: 
vSS!BviolationA or vSS!BviolationB depends on Channel)  

AsyncMode 
If the packet was generated by the asynchronous debug mode, this parameter is set to 1. 

FrameCRC 
If the packet was generated by the asynchronous debug mode, the FrameCRC contains the cyclic 
redundancy check code is computed over complete frame. In synchronous monitoring mode, this 
parameter is not set. 

TimeStamp 
The FlexCard timestamp (per default 1 µs resolution). FlexCard PMC-II and FlexCard USB-M: The 
timestamp marks the point in time where the FlexCard detects the transition from the ChannelIdle 
state to the FlexRay frame header of the received frame. 

CC 
The FlexCard CC which created this packet. This parameter will always be set to fcCC1 if only one 
FlexRay CC is available. 

See Also 
fcPacket, fcChannel 

 

 

Information 

The payload length is a multiple of 16-bit words. The payload data is also given in 16-bit words. 
 

4.6.1.3 fcTxAcknowledgePacket  

This structure provides information about a transmit acknowledge packet. Transmit acknowledge packets 
are used to inform the user when a frame is transmitted. 



 

 

Created by STAR ELECTRONICS GmbH & Co. KG   

Date created 2021-10-05 Date modified  2021-10-05 Page 83 of 250 
 

3-
00

0
9-

0
S

01
-D

0
3_

A
P

I 
D

oc
um

en
ta

ti
on

_D
2

V
5

-F
.d

oc
x 

 

Typedef struct fcTxAcknowledgePacket 
{ 
    fcDword BufferId; 
    fcDword TimeStamp; 
    fcDword CycleCount; 
 
    fcDword ID : 11; 
    fcDword STARTUP : 1; 
    fcDword SYNC : 1; 
    fcDword NF : 1; 
    fcDword PP : 1; 
    fcDword R : 1; 
    fcDword PayloadLength : 7; 
    fcDword ValidFrame : 1; 
    fcDword SyntaxError : 1; 
    fcDword ContentError : 1; 
    fcDword HeaderCRC : 11; 
    fcWord* pData; 
    fcChannel Channel; 
    fcCC CC; 
} fcTxAcknowledgePacket; 

Members 
BufferId 

The buffer id used to transmit the frame (equivalent to the buffer id returned by the function 
fcbFRConfigureMessageBuffer). 

TimeStamp 
The FlexCard timestamp (per default 1 µs resolution). FlexCard PMC-II and FlexCard USB-M: The 
timestamp marks the point in time where the FlexCard detects the transition from the ChannelIdle 
state to the FlexRay frame header of the transmitted frame. 

CycleCount 
Indicates the cycle in which the frame was transmitted. (FlexRay Protocol Specification: 
vTF!Header!CycleCount) 

ID 
The frame id defines the slot in which the frame was transmitted. 

STARTUP 
Indicates if the frame was a start-up frame (=1) or not (=0) 

SYNC 
Indicates if the frame was a sync frame (=1) or not (=0) 

NF 
Set to 0, the null frame indicator indicates that pData contains no valid data. Set to 1, it indicates 
that pData contains valid data.  

PP 
The payload preamble indicator indicates whether or not an optional vector is contained within the 
payload segment of the frame transmitted. In the static segment, it indicates the presence of a 
network management vector at the beginning of the payload. In the dynamic segment it indicates the 
presence of a message id at the beginning of the payload. 

R 
Reserved Bit 

PayloadLength 
Defines the number of 16-bit words contain in pData 

ValidFrame 
If a valid frame was received, this parameter is set to 1 (FlexRay Protocol Specification: 
vSS!ValidFrameA or vSS!ValidFrameB depends on Channel  - Table 9-2: Slot status interpretation) 

SyntaxError 
If a syntax error was observed, this parameter is set to 1 (frame is syntactically incorrect). (FlexRay 
Protocol Specification: vSS!SyntaxErrorA or vSS!SyntaxErrorB depends on Channel) 

ContentError 
If a content error was observed, this parameter is set to 1 (frame is semantically incorrect). (FlexRay 
Protocol Specification: vSS!ContentErrorA or vSS!ContentErrorB depends on Channel) 



 

 

Created by STAR ELECTRONICS GmbH & Co. KG   

Date created 2021-10-05 Date modified  2021-10-05 Page 84 of 250 
 

3-
00

0
9-

0
S

01
-D

0
3_

A
P

I 
D

oc
um

en
ta

ti
on

_D
2

V
5

-F
.d

oc
x 

 

HeaderCRC 
The header CRC contains the cyclic redundancy check code is computed over the sync frame indicator, 
the start-up frame indicator, the frame id and the payload length. 

pData 
The pointer to the payload data. The payload is given in 16-bit words. 
 
If Data0 is the first byte that was transmitted and Data1 the second byte transmitted, then the high 
byte (Bit 8 – 15) of payload[0] contains Data1, the low byte (Bit 0-7) of payload[0] contains Data0, 
etc. 

Parameter data data[0] (Word 0) data[1] (Word 1) … 
High byte Low byte High byte Low byte … 

FlexRay payload segment Data 1 Data 0 Data 3 Data 2 … 
 

Channel 
The channel (A or B) on which the frame was transmitted.  
(FlexRay Protocol Specification: vRF!Channel) 

CC 
The FlexCard CC which created this packet. This parameter will always be set to fcCC1 if only one 
FlexRay CC is available. This parameter will always be set to fcCC2 for used SelfSync feature packets. 

See Also 
fcPacket, fcChannel 

4.6.1.4 fcErrPOCErrorModeChangedInfo 
This structure provides additional information about the fcErrPOCErrorModeChanged error. 

Typedef struct fcErrPOCErrorModeChangedInfo 
{ 
    fcState State; 
}fcErrPOCErrorModeChangedInfo; 

Members 
State 

Contains the new POC error mode (HALT, NORMAL_ACTIVE or NORMAL_PASSIVE) 

See Also 
fcErrorPacket, fcState 

4.6.1.5 fcErrSyncFramesInfo 
This structure provides additional information about the fcErrSyncFramesBelowMinimum and 
fcErrSyncFrameOverflow errors.  

Typedef struct fcErrSyncFramesInfo 
{ 
    fcDword SyncFramesEvenA : 4; 
    fcDword SyncFramesEvenB : 4; 
    fcDword SyncFramesOddA : 4; 
    fcDword SyncFramesOddB : 4; 
}fcErrPOCErrorModeChangedInfo; 

Members 
SyncFramesEvenA 

Valid sync frame received and transmitted on channel A in even communication cycles 
SyncFramesEvenB 

Valid sync frame received and transmitted on channel B in even communication cycles 
SyncFramesOddA 

Valid sync frame received and transmitted on channel A in odd communication cycles 
SyncFramesOddB 

Valid sync frame received and transmitted on channel B in odd communication cycles 



 

 

Created by STAR ELECTRONICS GmbH & Co. KG   

Date created 2021-10-05 Date modified  2021-10-05 Page 85 of 250 
 

3-
00

0
9-

0
S

01
-D

0
3_

A
P

I 
D

oc
um

en
ta

ti
on

_D
2

V
5

-F
.d

oc
x 

 

See Also 
fcErrorPacket 

4.6.1.6 fcErrClockCorrectionFailureInfo 
This structure provides additional information about the fcErrClockCorrectionFailure error. 

Typedef struct fcErrClockCorrectionFailureInfo 
{ 
    fcDword MissingRateCorrection : 1; 
    fcDword RateCorrectionLimitReached : 1; 
 
    fcDword OffsetCorrectionLimitReached : 1; 
    fcDword MissingOffsetCorrection : 1; 
 
    fcDword SyncFramesEvenA : 4; 
    fcDword SyncFramesEvenB : 4; 
    fcDword SyncFramesOddA : 4; 
    fcDword SyncFramesOddB : 4; 
}fcErrClockCorrectionFailureInfo; 

Members 
MissingRateCorrection 

Is set to 1 if no rate correction can be performed because no pairs of even/odd sync frames were 
received. 

RateCorrectionLimitReached 
Is set to 1 if the maximum rate correction limit is reached. 

OffsetCorrectionLimitReached 
Is set to 1 if the maximum offset correction limit is reached. 

MissingOffsetCorrection 
Is set to 1 if no offset correction can be performed because no sync frames were received. 

SyncFramesEvenA 
Valid sync frame received and transmitted on channel A in even communication cycles 

SyncFramesEvenB 
Valid sync frame received and transmitted on channel B in even communication cycles 

SyncFramesOddA 
Valid sync frame received and transmitted on channel A in odd communication cycles 

SyncFramesOddB 
Valid sync frame received and transmitted on channel B in odd communication cycles 

See Also 
fcErrorPacket 

4.6.1.7 fcErrSlotInfo 
This structure provides additional information about the fcErrSyntax, fcErrContent, 
fcErrSlotBoundaryViolation, fcErrTransmissionAcrossBoundary, 
fcErrLatestTransmitViolation fcErrSyntaxSW, fcErrSlotBoundaryViolationSW, 
fcErrTransmissionConflictSW, fcErrSyntaxNIT and fcErrSlotBoundaryViolationNIT 
errors. 

Typedef struct fcErrSlotInfo 
{ 
    fcChannel Channel; 
    fcDword SlotCount; 
}fcErrSlotInfo; 

Members 
Channel 

The channel on which the error was observed. 
SlotCount 

The approximate slot count when the error occurred.  



 

 

Created by STAR ELECTRONICS GmbH & Co. KG   

Date created 2021-10-05 Date modified  2021-10-05 Page 86 of 250 
 

3-
00

0
9-

0
S

01
-D

0
3_

A
P

I 
D

oc
um

en
ta

ti
on

_D
2

V
5

-F
.d

oc
x 

 

See Also 
fcErrorPacket 

4.6.1.8 fcErrorPacket  
This structure provides information about an error packet. 

Typedef struct fcErrorPacket 
{ 
    fcErrorPacketFlag Flag; 
    fcDword TimeStamp; 
    fcDword CycleCount;  
 
    union 
    { 
 fcErrPOCErrorModeChangedInfo ErrPOCErrorModeChangedInfo; 
 fcErrSyncFramesInfo ErrSyncFramesInfo; 
 fcErrSlotInfo ErrSlotInfo; 
 fcErrClockCorrectionFailureInfo ErrClockCorrectionFailureInfo; 
    }AdditionalInfo; 
    fcCC CC; 
 
    fcDword Reserved; 
}fcErrorPacket; 

Members 
Flag 

Error type 
TimeStamp 

The FlexCard time stamp (per default 1 µs resolution). Indicates the time at which the packet was 
generated. 

CycleCount 
The cycle in which the error occurred. 

AdditionalInfo 
• ErrPOCErrorModeChangedInfo 

Additional information about the fcErrPOCErrorModeChanged error. 
• ErrSyncFramesInfo 

Additional information about the fcErrSyncFramesBelowMinimum, 
fcErrSyncFrameOverflow errors 

• ErrSlotInfo 
Additional information about the fcErrSyntax, fcErrContent, 
fcErrSlotBoundaryViolation, fcErrTransmissionAcrossBoundary and 
fcErrLatestTransmitViolation errors 

• ErrClockCorrectionFailureInfo 
Additional information about the fcErrClockCorrectionFailure error. 

CC 
The FlexCard CC which created this packet. This parameter will always be set to fcCC1 if only one 
FlexRay CC is available. 

Reserved 
Reserved for future use. 

See Also 
fcPacket, fcErrorPacketFlag, fcErrPOCErrorModeChangedInfo, fcErrSyncFramesInfo, 
fcErrSlotInfo, fcErrClockCorrectionFailureInfo 

4.6.1.9 fcStatusWakeupInfo 
This structure provides additional information about the cStatusWakeupStatus status. 



 

 

Created by STAR ELECTRONICS GmbH & Co. KG   

Date created 2021-10-05 Date modified  2021-10-05 Page 87 of 250 
 

3-
00

0
9-

0
S

01
-D

0
3_

A
P

I 
D

oc
um

en
ta

ti
on

_D
2

V
5

-F
.d

oc
x 

 

Typedef struct fcStatusWakeupInfo 
{ 
    fcWakeupStatus WakeupStatus; 
} fcStatusWakeupInfo; 

Members 
WakeupStatus 

Current wake-up state. 

See Also 
fcStatusPacket, fcWakeupStatus 

4.6.1.10 fcStatusPacket  

This structure provides information about a status packet. 

Typedef struct fcStatusPacket 
{ 
    fcStatusPacketFlag Flag; 
    fcDword TimeStamp; 
    fcDword CycleCount;  
  
    union 
    { 

   fcStatusWakeupInfo StatusWakeupInfo; 
    }AdditionalInfo; 
    fcCC    CC; 
    fcDword Reserved[2]; 
}fcStatusPacket; 

Members 
Flag 

Status type 
TimeStamp 

The FlexCard time stamp (per default 1 µs resolution). Indicates the time at which the packet was 
generated. 

CycleCount 
The cycle in which the status has changed. 

AdditionalInfo 
StatusWakeupInfo 

Additional information about fcStatusWakeupStatus status 
CC 

The FlexCard CC which created this packet. This parameter will always be set to fcCC1 if only one 
FlexRay CC is available. This parameter will always be set to fcCC2 for used SelfSync feature packets. 

Reserved 
Reserved for future use. 

See Also 
fcPacket, fcStatusPacketFlag, fcStatusWakeupInfo 

4.6.1.11 fcNMVectorPacket   

This structure provides information about a network management vector. (FlexRay Protocol Specification 
V2.0: Section 4.3.1 NMVector) 



 

 

Created by STAR ELECTRONICS GmbH & Co. KG   

Date created 2021-10-05 Date modified  2021-10-05 Page 88 of 250 
 

3-
00

0
9-

0
S

01
-D

0
3_

A
P

I 
D

oc
um

en
ta

ti
on

_D
2

V
5

-F
.d

oc
x 

 

typedef struct fcNMVectorPacket 
{ 
    fcDword TimeStamp; 
    fcDword CycleCount; 
    fcDword NMVectorLength; 
    fcByte NMVector[12]; 
    fcCC CC; 
    fcDword Reserved; 
} fcNMVectorPacket; 

Members 
TimeStamp 

The FlexCard time stamp (per default 1 µs resolution). Indicates the time at which the packet was 
generated. 

CycleCount 
The cycle in which the network management vector was updated. 

NMVectorLength 
Length of network management vector in number of bytes. (FlexRay Protocol Specification: 
gNetworkManagementVectorLength) 

NMVector 
The data bytes of the network management vector.  

CC 
The FlexCard CC which created this packet. This parameter will always be set to fcCC1 if only one 
FlexRay CC is available. 

Reserved 
Reserved for future use. 

See Also 
fcPacket, fcCC 

4.6.1.12 fcNotificationPacket   
This structure provides information about a notification packet. A notification packet is generated each 
time the configured time out elapses. The generation of this packet can be controlled with the function 
fcbNotificationPacket. 

Typedef struct fcNotificationPacket 
{ 
    fcDword TimeStamp; 
    fcDword SequenceCounter; 
    fcDword Reserved; 
} fcNotificationPacket; 

Members 
TimeStamp 

The FlexCard time stamp (per default 1 µs resolution). Indicates the time at which the packet was 
generated. 

SequenceCounter 
This parameter is incremented each time a notification packet is generated. 

Reserved 

See Also 
fcPacket, fcbNotificationPacket 

 

 

Information 

This packet type is initially supported by FlexCard API version S2V0-F. 

 

4.6.1.13 fcTriggerExInfoPacket 
This structure provides information about a trigger packet.  



 

 

Created by STAR ELECTRONICS GmbH & Co. KG   

Date created 2021-10-05 Date modified  2021-10-05 Page 89 of 250 
 

3-
00

0
9-

0
S

01
-D

0
3_

A
P

I 
D

oc
um

en
ta

ti
on

_D
2

V
5

-F
.d

oc
x 

 

Typedef struct fcTriggerExInfoPacket 
{ 
 fcDword Condition; 
 fcDword TimeStamp; 
 fcDword SequenceCount; 
 fcDword Reserved1; 
 fcQuad PerformanceCounter; 
 fcDword Edge; 
 fcDword TriggerLine; 
 fcDword reserved[4]; 
} fcTriggerInfoPacket; 

Members 
Condition 

The fulfilled condition which has caused the trigger packet generation. For hardware FlexCard 
Cyclone II SE or FlexCard USB-M, this variable is fcTriggerConditionEx. For hardware FlexCard PMC-
II, this variable is fcTriggerConditionPMC. 

TimeStamp 
The FlexCard time stamp (per default 1 µs resolution). Indicates the time at which the packet was 
generated. 

Reserved1 
Reserved for future use. 

SequenceCount 
Sequence count for each signal. 

PerformanceCounter 
Variable that receives the current performance-counter value. This value is only valid when all of the 
following conditions are met: 
-Trigger condition is fcTriggerInOnSWPulse or fcTriggerInOnSWTimer 
-The hardware is FlexCard USB-M 
-The operating system is Windows 

Edge 
The edge on which the trigger was signalled. 

TriggerLine 
The trigger line which detected a trigger signal. This value is only valid for hardware triggers of 
FlexCard PMC, FlexCard PMC-II, FlexCard PXIe3, FlexCard PCIe3. 

Reserved[4] 
Reserved for future use. 

See Also 
fcPacket 

 

Information 

This packet type is initially supported by FlexCard API version S2V2-F. 

 

4.6.1.14 fcCANPacket 
This structure provides information about a CAN packet. 



 

 

Created by STAR ELECTRONICS GmbH & Co. KG   

Date created 2021-10-05 Date modified  2021-10-05 Page 90 of 250 
 

3-
00

0
9-

0
S

01
-D

0
3_

A
P

I 
D

oc
um

en
ta

ti
on

_D
2

V
5

-F
.d

oc
x 

 

Typedef struct fcCANPacket 
{ 
 fcDword ID           : 29; 
 fcDword ExtendedId   : 1; 
 fcDword TimeStamp; 
 fcDword BufferNumber : 8; 
 fcDword DLC          : 4; 
 fcDword Direction    : 1; 
 fcDword RemoteFrame  : 1; 
 fcDword MessageLost  : 1; 
 fcDword Reserved; 
 fcCC CC; 
 fcByte Data[8]; 
}fcCANPacket; 

Members 
ID 

The CAN message identifier which was received or transmitted. 
ExtendedId 

If this flag is 1 the CAN message is an extended frame. If set to 0 it is a standard frame. 
TimeStamp 

The CAN timestamp (per default 1 µs resolution). FlexCard PMC-II and FlexCard USB-M: The 
timestamp marks the point in time where the FlexCard detects the Ack Slot of the frame. 

BufferNumber 
Indicates the corresponding buffer number for the CAN packet. 

DLC 
Indicates the data length (in bytes). 

Direction 
This flag depends on the parameter RemoteFrame. If Direction is 0 and RemoteFrame is 0, 
the CAN packet is a received data frame. If Direction is 1 and RemoteFrame is 0 the CAN packet 
is a transmit acknowledge frame generated by the FlexCard. If RemoteFrame is 1, see 
RemoteFrame for further description. 
When a FlexCard PXIe3/FlexCard PCIe3 received a frame via fcBase API in the FlexDevice mode, it 
has the direction set to 0 (the frame was received by the FlexCard). 
For FlexDevice the flag tells if the Frame was received (0) or sent (1) by the Device. 

RemoteFrame 
This flag depends on the parameter Direction. If RemoteFrame is 1 and Direction is 0, the 
CAN packet is a remote rx frame. If RemoteFrame is 1 and Direction is 1, the CAN packet is a 
remote tx frame. If Direction is 0, see Direction for further description. 

MessageLost 
If this flag is 1 the CAN Communication Controller has lost a message. If 0 no message has been lost. 
This flag is only valid with Direction = 0. 

Reserved 
Reserved for future use. 

CC 
The CAN Communication Controller on which the frame was received or transmitted. 

Data 
The received or transmitted data. All of the 8 data bytes can be read. The corresponding parameter 
DLC indicates the length of the valid values. 

See Also 
fcPacket 



 

 

Created by STAR ELECTRONICS GmbH & Co. KG   

Date created 2021-10-05 Date modified  2021-10-05 Page 91 of 250 
 

3-
00

0
9-

0
S

01
-D

0
3_

A
P

I 
D

oc
um

en
ta

ti
on

_D
2

V
5

-F
.d

oc
x 

 

 

Information 

This packet type is initially supported by FlexCard API version S4V0-F. 

 

4.6.1.15 fcCANErrorPacket 
This structure provides information about a CAN error packet. 

Typedef struct fcCANErrorPacket 
{ 
 fcCANErrorType Type; 

fcCANCcState State; 
 fcDword TimeStamp; 
 fcDword ReceiveErrorCounter; 
 fcDword TransmitErrorCounter; 
 fcCC CC; 
 fcDword Reserved[2]; 
}fcCANErrorPacket; 

Members 
Type 

Error type 
State 

Communication controller state 
TimeStamp 

The FlexCard time stamp (per default 1 µs resolution). Indicates the time at which the packet was 
generated. 

ReceiveErrorCounter 
Actual state of the Receive Error Counter. Valid values range from 0 to 127. 

TransmitErrorCounter 
Actual state of the Transmit Error Counter. Values values range from 0 to 255. 

CC 
The CC on which the packet was created. 

Reserved[4] 
Reserved for future use. 

See Also 
fcPacket, fcCANErrorType, fcCANCcState 

 

 

Information 

This packet type is initially supported by FlexCard API version S4V0-F. 

 

4.6.1.16 fcCANFDPacket 

This structure provides information about a CAN-FD packet. 



 

 

Created by STAR ELECTRONICS GmbH & Co. KG   

Date created 2021-10-05 Date modified  2021-10-05 Page 92 of 250 
 

3-
00

0
9-

0
S

01
-D

0
3_

A
P

I 
D

oc
um

en
ta

ti
on

_D
2

V
5

-F
.d

oc
x 

 

Typedef struct fcCANFDPacket 
{ 

fcDword ID           :29; 
fcDword ExtendedId   :1; 
fcDword TimeStampLow; 
fcDword TimeStampHigh; 
fcDword BufferNumber :8; 
fcDword DLC          :4; 
fcDword Direction    :1; 
fcDword RemoteFrame  :1; 
fcDword MessageLost  :1; 
fcDword FdFormat  :1; 
fcDword BitRateSwitch  :1; 
fcDword ESI  :1; 
fcDword Reserved; 
fcCC CC; 
fcByte* pData; 

} fcCANFDPacket; 

Members 
ID 

The CAN message identifier which was received or transmitted. 
ExtendedId 

If this flag is 1 the CAN message is an extended frame. If set to 0 it is a standard frame. 
TimeStampLow 

The CAN timestamp low (per default 1 µs resolution). FlexCard PMC-II and FlexCard USB-M: The 
timestamp marks the point in time where the FlexCard detects the Ack Slot of the frame. 

TimeStampHigh 
The CAN timestamp high (per default 1 µs resolution). FlexCard PMC-II and FlexCard USB-M: The 
timestamp marks the point in time where the FlexCard detects the Ack Slot of the frame. 

BufferNumber 
Unused field. 

DLC 
Indicates the data length. It is coded with four bits according to the CAN/ CAN-FD standard. 

Direction 
If Direction is 0 the CAN packet is a received data frame. If Direction is 1 the packet is a transmit 
acknowledge frame generated by the FlexCard. 
When a FlexCard PXIe3/FlexCard PCIe3 received a frame via fcBase API in the FlexDevice mode, it 
has the direction set to 0 (the frame was received by the FlexCard). 
For FlexDevices the flag tells if the Frame was received (0) or sent (1) by the Device. 

RemoteFrame 
Unused field. 

MessageLost 
Unused field. 

FdFormat 
If this flag is 1 the message has the CAN-FD frame format. 

BitRateSwitch 
If this flag is 1 the message uses CAN-FD bit rate switching. This bit is only valid when FdFormat is 1. 

ESI 
If ESI (Error state indicator) is 0, the transmitting node is in the error active state. That means the 
node is allowed to send error frames. If ESI is 1, the transmitting node is in the error passive state. 
This bit is only valid when FdFormat is 1. 

Reserved 
Reserved for future use. 

CC 
The CAN Communication Controller on which the frame was received or transmitted. 

pData 
The pointer to the payload data. The payload is given in byte. The corresponding parameter DLC 
indicates the length of the valid values. 



 

 

Created by STAR ELECTRONICS GmbH & Co. KG   

Date created 2021-10-05 Date modified  2021-10-05 Page 93 of 250 
 

3-
00

0
9-

0
S

01
-D

0
3_

A
P

I 
D

oc
um

en
ta

ti
on

_D
2

V
5

-F
.d

oc
x 

 

See Also 
fcPacket 
 

 

Information 

This packet type is initially supported by FlexCard API version S6V6-F. 

 

4.6.1.17 fcCANFDErrorPacket 
This structure provides information about a CAN-FD error packet. 

Typedef struct fcCANFDErrorPacket 
{ 
 fcCANErrorType Type; 

fcCANCcState State; 
 fcDword TimeStampLow; 
 fcDword TimeStampHigh; 
 fcDword ReceiveErrorCounter; 
 fcDword TransmitErrorCounter; 
 fcCC CC; 
 fcDword Reserved[3]; 
}fcCANFDErrorPacket; 

Members 
Type 

Error type 
State 

Current CAN CC state 
TimeStampLow 

The FlexCard time stamp low (per default 1 µs resolution). Indicates the time at which the packet was 
generated. 

TimeStampHigh 
The FlexCard time stamp high (per default 1 µs resolution). Indicates the time at which the packet was 
generated. 

ReceiveErrorCounter 
Current state of the Receive Error Counter. Valid values range from 0 to 127. 

TransmitErrorCounter 
Current state of the Transmit Error Counter. Values values range from 0 to 255. 

CC 
The CC on which the packet was created. 

Reserved[4] 
Reserved for future use. 

See Also 
fcPacket, fcCANErrorType, fcCANCcState 

 

 

Information 

This packet type is initially supported by FlexCard API version S6V6-F. 

 

4.6.1.18 fcEthernetPacket  
This structure provides information about an Ethernet packet. 



 

 

Created by STAR ELECTRONICS GmbH & Co. KG   

Date created 2021-10-05 Date modified  2021-10-05 Page 94 of 250 
 

3-
00

0
9-

0
S

01
-D

0
3_

A
P

I 
D

oc
um

en
ta

ti
on

_D
2

V
5

-F
.d

oc
x 

 

Typedef struct fcEthernetPacket 
{ 
 fcDword TimeStamp; 

fcCC CC; 
fcWord PayloadLength; 
fcWord Reserved; 
fcByte* pData; 

}fcEthernetPacket; 

Members 
TimeStamp 

The FlexCard time stamp (per default 1 µs resolution). Indicates the time at which the packet was 
generated 

CC 
The CC on which the frame was transmitted/received.  

PayloadLength 
Defines the number of octets contained in pData, including following information: 
MAC destination, MAC source, 802.1Q tag (if it exists), ethertype, payload, crc. 

Reserved 
Reserved for future use. 

pData 
The pointer to the payload data. The payload is given in octets. 
pData[0..n] contains following information: 
MAC destination, MAC source, 802.1Q tag (if it exists), ethertype, payload, crc. 
In case you are not interested in the crc, cut off the last 4 octets.  

See Also 
fcPacket 

4.6.1.19 fcEthernetErrorPacket  

This structure provides information about an Ethernet error packet. 

Typedef struct fcEthernetErrorPacket 
{ 
 fcDword TimeStamp; 

fcCC CC;  
fcEthernetErrorType Type; 
fcDword Reserved[5]; 

}fcEthernetPacket; 

Members 
TimeStamp 

The FlexCard time stamp (per default 1 µs resolution). Indicates the time at which the packet was 
generated 

CC 
The CC on which the packet was created.  

fcEthernetErrorType 
Contains the ethernet error type. 

Reserved 
Reserved for future use.  

See Also 
fcPacket 

 

 

Information 

This packet type is initially supported by FlexCard API version S6V7-F. 

 

4.6.1.20 fcPacket  

This structure provides information about a packet. 



 

 

Created by STAR ELECTRONICS GmbH & Co. KG   

Date created 2021-10-05 Date modified  2021-10-05 Page 95 of 250 
 

3-
00

0
9-

0
S

01
-D

0
3_

A
P

I 
D

oc
um

en
ta

ti
on

_D
2

V
5

-F
.d

oc
x 

 

Typedef struct fcPacket 
{ 
    fcPacketType Type; 
    union 
    { 
        fcFlexRayFrame*         FlexRayFrame; 
        fcInfoPacket*           InfoPacket; 
        fcErrorPacket*          ErrorPacket; 
        fcStatusPacket*         StatusPacket; 
        fcTriggerInfoPacket*    TriggerPacket; 
        fcTxAcknowledgePacket*  TxAcknowledgePacket; 
        fcNMVectorPacket*       NMVectorPacket; 
        fcNotificationPacket*   NotificationPacket; 
        fcTriggerExInfoPacket*  TriggerExPacket; 
        fcCANPacket*            CANPacket; 
        fcCANErrorPacket*       CANErrorPacket; 
        fcCANFDPacket*          CANFDPacket; 
        fcCANFDErrorPacket*     CANFDErrorPacket; 
        fcEthernetPacket*       EthernetPacket; 
        fcEthernetErrorPacket*  EthernetErrorPacket; 
    }; 
    struct fcPacket* pNextPacket; 
}fcPacket; 

Members 
Type 

Type of packet. 
FlexRayFrame 

Pointer to the packet data. The content depends on the type of packet. 
InfoPacket 

Pointer to the packet data. The content depends on the type of packet. 
ErrorPacket 

Pointer to the packet data. The content depends on the type of packet. 
StatusPacket 

Pointer to the packet data. The content depends on the type of packet. 
TriggerPacket 

Pointer to the packet data. The content depends on the type of packet. 
TxAcknowledgePacket 

Pointer to the packet data. The content depends on the type of packet. 
NMVectorPacket 

Pointer to the packet data. The content depends on the type of packet. 
NotificationPacket 

Pointer to the packet data. The content depends on the type of packet. 
TriggerExPacket 

Pointer to the packet data. The content depends on the type of packet. 
CANPacket 

Pointer to the packet data. The content depends on the type of packet. 
CANErrorPacket 

Pointer to the packet data. The content depends on the type of packet. 
CANFDPacket 

Pointer to the packet data. The content depends on the type of packet. 
CANFDErrorPacket 

Pointer to the packet data. The content depends on the type of packet. 
EthernetPacket 

Pointer to the packet data. The content depends on the type of packet. 
EthernetErrorPacket 

Pointer to the packet data. The content depends on the type of packet. 
pNextPacket 

Pointer to the next packet. If the pointer is NULL, there are no more packets available. 



 

 

Created by STAR ELECTRONICS GmbH & Co. KG   

Date created 2021-10-05 Date modified  2021-10-05 Page 96 of 250 
 

3-
00

0
9-

0
S

01
-D

0
3_

A
P

I 
D

oc
um

en
ta

ti
on

_D
2

V
5

-F
.d

oc
x 

 

See Also 
fcInfoPacket, fcErrorPacket, fcStatusPacket, fcTriggerInfoPacket, 
fcTriggerExInfoPacket, fcNotificationPacket, fcFlexRayFrame, fcTxAcknowledgePacket, 
fcNMVectorPacket, fcCANPacket, fcCANErrorPacket, fcCANFDPacket, 
fcCANFDErrorPacket, fcEthernetPacket, fcEthernetErrorPacket 

4.6.2 Enumerations 

4.6.2.1 fcPacketType  
This enumeration contains the different packet types. 

Typedef enum fcPacketType 
{ 
 fcPacketTypeInfo           = 1, 
 fcPacketTypeFlexRayFrame   = 2, 
 fcPacketTypeError          = 3, 
 fcPacketTypeStatus         = 4, 
 fcPacketTypeTrigger        = 5, 
 fcPacketTypeTxAcknowledge  = 6, 
 fcPacketTypeNMVector       = 7, 
 fcPacketTypeNotification   = 8, 
 fcPacketTypeTriggerEx      = 9, 
 fcPacketTypeCAN            = 10, 
 fcPacketTypeCANError       = 11, 
 fcPacketTypeCANFD          = 12, 
 fcPacketTypeCANFDError     = 13, 
 fcPacketTypeEthernet       = 14, 

fcPacketTypeEthernetError  = 15, 
}fcPacketType; 

Members 
fcPacketTypeInfo  

Frame is an info packet 
fcPacketTypeFlexRayFrame  

Frame is a FlexRay frame 
fcPacketTypeError  

Frame is an error packet 
fcPacketTypeStatus 

Frame is a status packet 
fcPacketTypeTrigger 

Frame is a trigger packet (obsolete) 
fcPacketTypeTxAcknowledge  

Frame is a transmit acknowledge packet 
fcPacketTypeNMVector  

Frame is a network management vector packet 
fcPacketTypeNotification 

Frame is a notification packet 
fcPacketTypeTriggerEx 

Frame is a trigger packet 
fcPacketTypeCAN 

Frame is a CAN packet 
fcPacketTypeCANError 

Frame is a CAN error packet 
fcPacketTypeCANFD 

Frame is a CAN-FD packet 
fcPacketTypeCANFDError 

Frame is a CAN-FD error packet 
fcPacketTypeEthernet 

Frame is an ethernet packet 



 

 

Created by STAR ELECTRONICS GmbH & Co. KG   

Date created 2021-10-05 Date modified  2021-10-05 Page 97 of 250 
 

3-
00

0
9-

0
S

01
-D

0
3_

A
P

I 
D

oc
um

en
ta

ti
on

_D
2

V
5

-F
.d

oc
x 

 

fcPacketTypeEthernetError 
Frame is an ethernet error packet 

See Also 
fcPacket, fcInfoPacket, fcFlexRayFrame, fcTxAcknowledgePacket, fcErrorPacket, 
fcStatusPacket, fcTriggerInfoPacket, fcNMVectorPacket, fcNotificationPacket, 
fcTriggerExInfoPacket, fcCANPacket, fcCANErrorPacket, fcCANFDPacket, 
fcCANFDErrorPacket, fcEthernetPacket, fcEthernetErrorPacket 

4.6.2.2 fcErrorPacketFlag 
This enumeration contains the different error types reported by an error packet. 

Typedef enum fcErrorPacketFlag 
{ 
    fcErrNone = 0, 
    fcErrFlexcardOverflow, 
    fcErrPOCErrorModeChanged, 
    fcErrSyncFramesBelowMinimum, 
    fcErrSyncFrameOverflow, 
    fcErrClockCorrectionFailure, 
    fcErrParityError, 
    fcErrReceiveFIFOOverrun, 
    fcErrEmptyFIFOAccess, 
    fcErrIllegalInputBufferAccess, 
    fcErrIllegalOutputbufferAccess, 
    fcErrSyntax, 
    fcErrContent, 
    fcErrSlotBoundaryViolation, 
    fcErrTransmissionAcrossBoundary, 
    fcErrLatestTransmitViolation, 
    fcErrSyntaxSW, 
    fcErrSlotBoundaryViolationSW, 
    fcErrTransmissionConflictSW, 
    fcErrSyntaxNIT, 
    fcErrSlotBoundaryViolationNIT, 
} fcErrorPacketFlag; 

Members 
fcErrNone  

No error occurred 
fcErrFlexcardOverflow 

FlexCard buffer overflow. This error occurs if the application was too slow to receive and process the 
packets. If the FlexCard is configured to stop the monitoring it is necessary to stop and start the 
monitoring again. Else the FlexCard continue the monitoring when an amount of free RAM space is 
available again. In such a case the FlexCard loses packets. 

fcErrPOCErrorModeChanged 
Protocol Operation Control error. Additional information is described in the structure 
fcErrPOCErrorModeChangedInfo 

fcErrSyncFramesBelowMinimum 
Additional information is described in the structure fcErrSyncFramesInfo 

fcErrSyncFrameOverflow 
Additional information described in the structure fcErrSyncFramesInfo 

fcErrClockCorrectionFailure 
Additional information is described in the structure fcErrClockCorrectionFailureInfo 

fcErrParityError 
Internal E-Ray error. No additional information is available 

fcErrReceiveFIFOOverrun 
No additional information exists for the internal FlexCard error 
(fcErrorPacket.AdditionalInfo is not valid)  

fcErrEmptyFIFOAccess 
No additional information exists for the internal FlexCard error  



 

 

Created by STAR ELECTRONICS GmbH & Co. KG   

Date created 2021-10-05 Date modified  2021-10-05 Page 98 of 250 
 

3-
00

0
9-

0
S

01
-D

0
3_

A
P

I 
D

oc
um

en
ta

ti
on

_D
2

V
5

-F
.d

oc
x 

 

fcErrIllegalInputBufferAccess 
No additional information exists for the internal FlexCard error  

fcErrIllegalOutputbufferAccess 
No additional information exists for the internal FlexCard error  

fcErrSyntax 
A syntax error was observed (frame is syntactically incorrect). (FlexRay Protocol Specification: 
vSS!SyntaxErrorA or vSS!SyntaxErrorB depends on Channel) Additional information are described 
in the structure fcErrSlotInfo 

fcErrContent 
A content error was observed (frame is semantically incorrect). (FlexRay Protocol Specification: 
vSS!ContentErrorA or vSS!ContentErrorB depends on Channel) Additional information is 
described in the structure fcErrSlotInfo 

fcErrSlotBoundaryViolation 
A slot boundary violation was observed. (FlexRay Protocol Specification: vSS!BviolationA or 
vSS!BviolationB depends on Channel) Additional information is described in the structure 
fcErrSlotInfo 

fcErrTransmissionAcrossBoundary 
Additional information is described in the structure fcErrSlotInfo 

fcErrLatestTransmitViolation 
Additional information is described in the structure fcErrSlotInfo 

fcErrSyntaxSW 
Syntax error in symbol window was observed. Additional information is described in the structure 
fcErrSlotInfo. 

fcErrSlotBoundaryViolationSW 
Slot boundary violation in symbol window was observed. Additional information is described in the 
structure fcErrSlotInfo. 

fcErrTransmissionConflictSW 
Transmission conflict in symbol window was observed. Additional information is described in the 
structure fcErrSlotInfo. 

fcErrSyntaxNIT 
Syntax error in network idle time was observed. Additional information is described in the structure 
fcErrSlotInfo. 

fcErrSlotBoundaryViolationNIT 
Slot boundary violation in network idle time was observed. Additional information is described in the 
structure fcErrSlotInfo. 

See Also 
fcErrorPacket, fcErrPOCErrorModeChangedInfo, fcErrSyncFramesInfo, 
fcErrClockCorrectionFailureInfo, fcErrSlotInfo 

4.6.2.3 fcStatusPacketFlag 
Possible hardware status flags are reported by a status packet. 

Typedef enum fcStatusPacketFlag 
{ 
    fcStatusNone = 0, 
    fcStatusWakeupStatus, 
    fcStatusCollisionAvoidanceSymbol, 
    fcStatusStartupCompletedSuccessfully, 
    fcStatusWakeupPatternChannelA, 
    fcStatusWakeupPatternChannelB, 
    fcStatusMTSReceivedonChannelA, 
    fcStatusMTSReceivedonChannelB, 
} fcStatusPacketFlags; 

Members 
fcStatusNone  

No status changes. 



 

 

Created by STAR ELECTRONICS GmbH & Co. KG   

Date created 2021-10-05 Date modified  2021-10-05 Page 99 of 250 
 

3-
00

0
9-

0
S

01
-D

0
3_

A
P

I 
D

oc
um

en
ta

ti
on

_D
2

V
5

-F
.d

oc
x 

 

fcStatusWakeupStatus 
Wakeup status has changed 

fcStatusCollisionAvoidanceSymbol 
Collision avoidance symbol was received 

fcStatusStartupCompletedSuccessfully 
Start-up has been successfully completed  

fcStatusWakeupPatternChannelA 
Wakeup pattern received on Channel A 

fcStatusWakeupPatternChannelB 
Wakeup pattern received on Channel B 

fcStatusMTSReceivedonChannelA 
Media Access Test Symbol received on Channel A 

fcStatusMTSReceivedonChannelB 
Media Access Test Symbol received on Channel B 

See Also 
fcPacket, fcStatusPacket, fcStatusWakeupInfo 

4.6.2.4 fcCANErrorType 

This enumeration contains the different error types reported by a CAN error packet. 

Typedef enum fcCANErrorType 
{ 
 fcCANErrorNone = 0, 
 fcCANErrorStuff, 
 fcCANErrorForm, 
 fcCANErrorAcknowledge, 
 fcCANErrorBit1, 
 fcCANErrorBit0, 
 fcCANErrorCRC, 
 fcCANErrorParity, 
}fcCANErrorType; 

Members 
fcCANErrorNone 

No error occurred. 
fcCANErrorStuff 

More than 5 equal bits in a sequence have occurred in a part of a received message where this is 
not allowed. 

fcCANErrorForm 
A fixed format part of a received frame has the wrong format. 

fcCANErrorAcknowledge 
The message the CAN Communication Controller transmitted was not acknowledged by another node. 

fcCANErrorBit1 
During the transmission of a message (with the exception of the arbitration field), the device wanted 
to send a recessive level (Bit of logical value 1), but the monitored bus value was dominant (Bit of 
logical value 0). 

fcCANErrorBit0 
During the transmission of a message, the device wanted to send a dominant level (data or identifier 
Bit logical value 0), but the monitored bus value was recessive (data or identifier Bit logical value 1). 

fcCANErrorCRC 
The CRC check sum was incorrect in the message received; the CRC received for an incoming 
message does not match with the calculated CRC for the received data. 

fcCANErrorParity 
The parity check mechanism has detected a parity error in the message RAM of the Communication 
Controller. 

See Also 
fcCANErrorPacket 



 

 

Created by STAR ELECTRONICS GmbH & Co. KG   

Date created 2021-10-05 Date modified  2021-10-05 Page 100 of 250 
 

3-
00

0
9-

0
S

01
-D

0
3_

A
P

I 
D

oc
um

en
ta

ti
on

_D
2

V
5

-F
.d

oc
x 

 

 

 

Information 

This enumeration is initially supported by FlexCard API version S4V0-F. 

 
 

4.6.2.5 fcEthernetErrorType 
This enumeration contains the different error types reported by an ethernet error packet. 

Typedef enum fcEthernetErrorType 
{ 
 fcEthernetErrorNone = 0, 
 fcEthernetErrorFrameCheckSequence,  
}fcEthernetErrorType; 

Members 
fcEthernetErrorNone 

No error occurred. 
fcEthernetErrorFrameCheckSequence 

A frame check sequence error was detected. 

See Also 
fcEthernetErrorPacket 

 

Information 

This enumeration is initially supported by FlexCard API version S6V7-F. 

 
 

4.6.3 fcbReceive 

This function reads all available packets from the FlexCard memory into a memory block allocated by the 
fcBase API. The frames are stored into a linked list. To free the memory allocated by this function, use the 
function fcFreeMemory with the type fcMemoryTypePacket. 

fcError fcbReceive( 
fcHandle hFlexCard,  
fcPacket** pPacket 

); 

Parameters 
hFlexCard 

[IN] Handle to a FlexCard 
pPacket 

[OUT] Address of the fcPacket object pointer. The memory for this structure and its content is 
allocated by the fcBase API. Packets are available if the return code is 0 and pPacket is not a null 
pointer. 

Return values 
If the function succeeds, the return value is 0. If the value is <> 0, use the functions described in the section 
Error Handling to get extended error information. 

 

Information 

This function allocates memory. To prevent memory leaks the memory has to be released after 
having processed the packets. 
 

 



 

 

Created by STAR ELECTRONICS GmbH & Co. KG   

Date created 2021-10-05 Date modified  2021-10-05 Page 101 of 250 
 

3-
00

0
9-

0
S

01
-D

0
3_

A
P

I 
D

oc
um

en
ta

ti
on

_D
2

V
5

-F
.d

oc
x 

 

Example 
fcPacket* pPackets = NULL; 
fcError e = fcbReceive(m_hFlexCard, &pPackets); 
if (0 == e) 
{ 
 fcPacket* pCurrentPacket = pPackets; 
 while (NULL != pCurrentPacket) 
 { 
  switch (pCurrentPacket->Type) 
  { 
  case fcPacketTypeInfo: 
   printf(“[fcPacketTypeInfo] TimeStamp: %f Cycle: %d\n”, 
    (float)pCurrentPacket->InfoPacket->TimeStamp* 0.000001, 
    pCurrentPacket->InfoPacket->CurrentCycle); 
   
  break; 
   
  case fcPacketTypeFlexRayFrame: 
  { 
   fcFlexRayFrame* pFrame = pCurrentPacket->FlexRayFrame; 
   printf(“[fcPacketTypeFlexRayFrame] Cycle: %d ID: %d Channel:”  
    “%d PayloadLength: %d”, pFrame->CycleCount, 
    pFrame->ID, 
    pFrame->Channel, 
    pFrame->PayloadLength); 
    
   for (int i = 0; i < pFrame->PayloadLength; i++) 
   { 
    printf(“%04X “, pFrame->pData[i]); 
   } 
    
   if (pFrame->PP) printf(“ PP”); 
   if (pFrame->NF) printf(“ NF”); 
   if (pFrame->SYNC) printf(“ SYNC”); 
   if (pFrame->STARTUP) printf(“ STARTUP”); 
   if (pFrame->SyntaxError) printf(“ SyntaxError”); 
   if (pFrame->ContentError) printf(“ ContentError”); 
   if (pFrame->ValidFrame) printf(“ ValidFrame”); 
   if (pFrame->SlotBoundaryViolation) 
    printf(“ SlotBoundaryViolation”); 
   if (pFrame->AsyncMode) 
    printf(“ AsyncMode FrameCRC: 0x%06X”, pFrame->FrameCRC); 
   printf(“\n”); 
   break; 
  } 
  case fcPacketTypeError: 
   printf(“[fcPacketTypeError]\n”); 
   break; 
   
  case fcPacketTypeStatus: 
   printf(“[fcPacketTypeStatus]\n”); 
   break; 
   
  case fcPacketTypeTrigger: 
   printf(“[fcPacketTypeTrigger]\n”); 
   break; 
   
  case fcPacketTypeTxAcknowledge: 
   printf(“[fcPacketTypeTxAcknowledge]\n”); 
   break; 
   
  case fcPacketTypeNMVector: 
   printf(“[fcPacketTypeNMVector]\n”); 
   break; 
  } 
   
  pCurrentPacket = pCurrentPacket->pNextPacket; 
 } 
  



 

 

Created by STAR ELECTRONICS GmbH & Co. KG   

Date created 2021-10-05 Date modified  2021-10-05 Page 102 of 250 
 

3-
00

0
9-

0
S

01
-D

0
3_

A
P

I 
D

oc
um

en
ta

ti
on

_D
2

V
5

-F
.d

oc
x 

 

 fcFreeMemory(fcMemoryTypePacket, pPackets); 
} 

 



 

 

Created by STAR ELECTRONICS GmbH & Co. KG   

Date created 2021-10-05 Date modified  2021-10-05 Page 103 of 250 
 

3-
00

0
9-

0
S

01
-D

0
3_

A
P

I 
D

oc
um

en
ta

ti
on

_D
2

V
5

-F
.d

oc
x 

 

5 FlexRay API 

The following section describes the data structures and features used for FlexRay functionality. To use 
these functions the FlexCard must have a firmware with a FlexRay CC and the FlexCard must be licensed 
for FlexRay. 

 

Information 

All enumerations, structures and function in this chapter are initially supported by FlexCard API 
version S4V2-F. 
 

 

5.1 Basic FlexRay Workflow 

The following figure shows a typical FlexRay workflow. Refer to the chapter General Function Availability to 
find out what FlexCard supports what functions. The FlexCard Windows Developer Setup installs the 
example applications fcDemo.exe, fcDemoPMC.exe and their source code to the installation directory. 



 

 

Created by STAR ELECTRONICS GmbH & Co. KG   

Date created 2021-10-05 Date modified  2021-10-05 Page 104 of 250 
 

3-
00

0
9-

0
S

01
-D

0
3_

A
P

I 
D

oc
um

en
ta

ti
on

_D
2

V
5

-F
.d

oc
x 

 

 

Figure 9: Typical FlexRay function workflow 

The following table gives information about what message buffer functions may be called while 
Monitoring is active. 



 

 

Created by STAR ELECTRONICS GmbH & Co. KG   

Date created 2021-10-05 Date modified  2021-10-05 Page 105 of 250 
 

3-
00

0
9-

0
S

01
-D

0
3_

A
P

I 
D

oc
um

en
ta

ti
on

_D
2

V
5

-F
.d

oc
x 

 

Functionality Action during monitoring 
New configuration of a message buffer. Not possible. 
Read message buffer configuration. Not possible. Application has to store the buffer 

information. 
Reconfiguration of a static FlexRay ID (Reconfigure 
channel, id, payload length). 

Only in extended mode 
(fcFRMsgBufCfgModeReconfigurationDuringMonitoring) 

Reconfiguration of a static FlexRay Sync-ID. Not possible due to limitations of the Communication 
Controller Bosch E-Ray. 

Reconfiguration of a dynamic FlexRay ID (Reconfigure 
channel, id, payload length). 

Possible. 

Turning off/on a static FlexRay ID (Reconfigure to 
fcChannelNone). 

Only in extended mode 
(fcFRMsgBufCfgModeReconfigurationDuringMonitoring) 

Turning off/on a static FlexRay Sync ID (Reconfigure to 
fcChannelNone). 

Not possible due to limitations of the Communication 
Controller Bosch E-Ray. 

Turning off/on a dynamic FlexRay ID (Reconfigure to 
fcChannelNone). 

Only in extended mode 
(fcFRMsgBufCfgModeReconfigurationDuringMonitoring) 

 

5.2 Initialization 

5.2.1 Enumerations 

5.2.1.1 fcMonitoringModes 

This enumeration defines the different modes available, used to monitor a FlexRay cluster. 

Typedef enum fcMonitoringModes 
{ 

fcMonitoringNormal, 
fcMonitoringDebug, 
fcMonitoringDebugAsynchron, 
fcMonitoringDebugAsynchronBeforeStartup, 

} fcMonitoringModes; 

Members 
fcMonitoringNormal 

First, the FlexCard tries to synchronize itself with the cluster. Once the synchronization succeeds, the 
FlexCard enters in the NORMAL_ACTIVE state and is able to transmit and receive FlexRay frames, 
symbols and errors, as previously configured. The timestamp accuracy in this mode is +/-1 µs. 

fcMonitoringDebug 
This mode is provided by the E-Ray FlexRay core. The FlexCard does not try to synchronize itself with 
the cluster and is only able to receive FlexRay frames, symbols and errors from the FlexRay bus. This 
mode does not allow transmission; it is therefore not possible to perform a start-up or a wake-up. This 
mode is adapted for debugging purpose (e.g. start-up of a FlexRay network fails). 
Note: To receive frames within this mode using an E-Ray version older than 1.3, you must configure 
RX receive buffers. The FIFO receive buffers aren’t working in this mode. With CC version 1.3 it’s 
possible to receive frames wih FIFO receive buffers. You may call fcbGetInfoFlexCard and read 
the variable CCVersion to check the E-Ray version that is present on the FlexCard. 

fcMonitoringDebugAsynchron 
This debug operation mode of the FlexCard allows the reception of all frames without any message 
buffer (API configures FIFO buffers automatically) and controller configuration. The only parameter to 
be set is the baudrate (Register 0x0090: 10 Mbit/s: 0x00000000, 5 Mbit/s: 0x00004000, 2.5 Mbit/s: 
0x00008000). This mode does not allow transmission. It is therefore not possible to perform a start-
up or a wake-up. This mode is adapted for debugging purpose (e.g. start-up of a FlexRay network fails 
or to monitor an unknown network). The timestamp accuracy in this mode is +/-2 µs. Incorrect data 
will be interpreted as received FlexRay frames (the Valid Frame Bit is not set for such frames). 



 

 

Created by STAR ELECTRONICS GmbH & Co. KG   

Date created 2021-10-05 Date modified  2021-10-05 Page 106 of 250 
 

3-
00

0
9-

0
S

01
-D

0
3_

A
P

I 
D

oc
um

en
ta

ti
on

_D
2

V
5

-F
.d

oc
x 

 

fcMonitoringDebugAsynchronBeforeStartup 
This mode combines the mode fcMonitoringDebugAsynchron and fcMonitoringNormal. 
The mode fcMonitoringDebugAsynchronBeforeStartup is used to receive all frames 
during start-up. Unlike fcMonitoringDebug this mode allows to send sync frames. After the start-
up completed successfully, the FlexCard switchs directly to the mode fcMonitoringNormal. 

See Also 
fcbFRMonitoringStart 

5.2.1.2 fcState 
This enumeration defines the possible Communication Controller POC states (FlexRay Protocol 
Specification: vPOC!State). For more details about Communication Controller POC states, please refer to 
[3]. 

Typedef enum fcState 
{ 

fcStateUnknown, 
fcStateConfig, 
fcStateNormalActive, 
fcStateNormalPassive, 
fcStateHalt, 
fcStateReady, 
fcStateStartup, 
fcStateWakeup, 
fcStateMonitorMode, 

} fcState; 

Members 
fcStateUnknown 

Communication controller state is not known. 
fcStateConfig 

Communication controller is in CONFIG state. 
fcStateNormalActive 

Communication controller is in NORMAL_ACTIVE state.  
fcStateNormalPassive 

Communication controller is in NORMAL_PASSIVE state. 
fcStateHalt 

Communication controller is in HALT state. 
fcStateReady 

Communication controller is in READY state. 
fcStateStartup 

Communication controller is in STARTUP state. 
fcStateWakeup 

Communication controller is in WAKEUP state. 
fcStateMonitorMode 

Communication controller is in MONITORMODE state. 

See Also 
fcbFRGetCcState, fcbFRMonitoringStart 

5.2.2 fcbFRMonitoringStart 

This function is used to start the monitoring of a FlexRay bus. Once the user calls the function with 
fcMonitoringNormal, it changes the Communication Controller state from configuration state to 
normal active state if the cluster integration succeeds. The function returns immediately and does not wait 
for the Communication Controller to get synchronous. The current Communication Controller state can be 
read using the function fcbFRGetCCState. If the FlexCard is synchronized with the cluster the function 
fcbFRGetCCState will return the value fcStateNormalActive. 



 

 

Created by STAR ELECTRONICS GmbH & Co. KG   

Date created 2021-10-05 Date modified  2021-10-05 Page 107 of 250 
 

3-
00

0
9-

0
S

01
-D

0
3_

A
P

I 
D

oc
um

en
ta

ti
on

_D
2

V
5

-F
.d

oc
x 

 

fcError fcbFRMonitoringStart( 
fcHandle hFlexCard, 
fcCC CC, 
fcMonitoringModes mode,  
fcBool restartTimestamps, 
fcBool enableCycleStartEvents 
fcBool enableColdstart, 
fcBool enableWakeup 

) 
 

Parameters 
hFlexCard 

[IN] Handle to a FlexCard. 
CC 

[IN] Communication controller index 
mode 

[IN] The monitoring mode. Not every monitoring mode is supported by all Communication Controllers. 
See fcMonitoringModes for details.  

restartTimestamps 
[IN] Set this parameter to 0 to restart the measurement without resetting the FlexCard timestamp. 
Set it to <> 0 to start the measurement from the beginning. The timestamps have microsecond 
resolution. 

enableCycleStartEvents 
[IN] Set this parameter to <> 0 to enable the cycle start events in order that at the beginning of every 
cycle the event fcNotificationTypeFRCycleStarted is signalled. On the FlexCard USB-M, 
this feature is not supported. fcbFRMonitoringStart does not return an error when this parameter 
is set, but no events are signalled. 

enableColdstart 
[IN] Set this parameter to <> 0 to allow the FlexCard to initialize the cluster communication, otherwise 
the coldstart inhibit mode is active. This feature can not be used in the monitoring modes 
fcMonitoringDebug and fcMonitoringDebugAsynchron. 

enableWakeup 
[IN] Set this parameter to <> 0 to transmit a wake-up pattern on the configured wake-up channel 
(FlexRay Protocol Specification: pWakeupChannel). A cluster wake-up must precede the 
communication start-up to ensure that all nodes in a cluster are awake. The minimum requirement for 
a cluster wake-up is that all bus drivers are supplied with power. This feature can not be used in the 
monitoring modes fcMonitoringDebug and fcMonitoringDebugAsynchron. 

Return values 
If the function succeeds, the return value is 0. If the value is <> 0, use the functions described in the section 
Error Handling to get extended error information. 

Remarks 
After the monitoring with fcMonitoringNormal has started, the user should check if the integration in 
the cluster was successful: fcbFRGetCCState should return the state fcStateNormalActive. 
 

 

Information 

After the monitoring has successfully started, the receive process must be started as soon as 
possible to avoid an overflow (error packet fcErrFlexcardOverflow is received). Once an 
overflow occurred, no more packets can be received. The monitoring must be stopped and started 
again. 

See Also 
fcCC, fcbFRMonitoringStop, fcbFRGetCcState, fcMonitoringModes, fcbSetEventHandleV2, 
fcbSetEventHandleSemaphore 



 

 

Created by STAR ELECTRONICS GmbH & Co. KG   

Date created 2021-10-05 Date modified  2021-10-05 Page 108 of 250 
 

3-
00

0
9-

0
S

01
-D

0
3_

A
P

I 
D

oc
um

en
ta

ti
on

_D
2

V
5

-F
.d

oc
x 

 

Example 
// Precondition: valid flexcard handle exists and the flexcard is  
// already configured. 
fcCC eCC = fcCC1; 
fcError e = fcbFRMonitoringStart(hFlexCard,eCC,fcMonitoringNormal,true, 
        false,false,false); 
if (0 == e)  
{ 
 bool synchronized = false; 
 bool timeout = false; 
 DWORD maxTime = ::GetTickCount() + 2000; 
 fcState currentState = fcStateUnknown; 
 
 // Check if the FlexCard is synchronized 
 do 
 { 
  fcbFRGetCcState(hFlexCard, eCC, &currentState); 
  synchronized = (currentState == fcStateNormalActive); 
  timeout   = ::GetTickCount() >= maxTime; 
 
 } while ( ! synchronized && ! timeout); 
  
 if (synchronized) 
 { 
  // Start your receive thread/routine 
  //   ... 
 } 
 else 
 { 
  // if we timed out, we stop the monitoring 
  fcbFRMonitoringStop(hFlexCard,eCC); 
 } 
}  
else 
{ 
 // error handling … 
} 

5.2.3 fcbFRMonitoringStop 

This function stops the FlexRay bus measurement. The Communication Controller is set back in its 
configuration state. 

fcError fcbFRMonitoringStop( 
fcHandle hFlexCard, 
fcCC CC 

) 

Parameters 
hFlexCard 

[IN] Handle to FlexCard 
CC 

[IN] Communication controller index 

Return values 
If the function succeeds, the return value is 0. If the value is <> 0, use the functions described in the section 
Error Handling to get extended error information. 

See Also 
fcCC, fcbFRMonitoringStart 



 

 

Created by STAR ELECTRONICS GmbH & Co. KG   

Date created 2021-10-05 Date modified  2021-10-05 Page 109 of 250 
 

3-
00

0
9-

0
S

01
-D

0
3_

A
P

I 
D

oc
um

en
ta

ti
on

_D
2

V
5

-F
.d

oc
x 

 

5.2.4 fcbFRGetCcState 

This function returns the current Communication Controller POC state. For a description of possible states, refer to 
the enumeration fcState. This function should be used to check if the integration into a FlexRay cluster has 
succeeded. 

On the FlexCard PXIe3/PCIe3 in the FlexDevice mode, this function is only allowed for debugging purposes. It 
should not be used in this case because the decoder and the communication controller should be independent. 

fcError fcbFRGetCcState( 
fcHandle hFlexCard, 
fcCC CC, 
fcState* pState 

) 

Parameters 
hFlexCard 

[IN] Handle to a FlexCard 
CC 

[IN] Communication controller index 
pState 

[OUT] Current Communication Controller state 

Return values 
If the function succeeds, the return value is 0. If the value is <> 0, use the functions described in the section 
Error Handling to get extended error information. 

See 
fcCC, fcState, fcbFRMonitoringStart, fcbFRMonitoringStop 

Example 
See example fcbFRMonitoringStart 

5.2.5 fcbFRSetTransceiverState 

This function sets the transceiver mode individually for each channel. 

fcError fcbFRSetTransceiverState ( 
fcHandle hFlexCard, 
fcCC CC, 
fcTransceiverState stateChA, 
fcTransceiverState stateChB 

) 

Parameters 
hFlexCard 

[IN] Handle to a FlexCard 
CC 

[IN] Communication controller index 
stateChA 

[IN] The new transceiver state for channel A 
stateChB 

[IN] The new transceiver state for channel B 

Return values 
If the function succeeds, the return value is 0. If the value is <> 0, use the functions described in the section 
Error Handling to get extended error information. 



 

 

Created by STAR ELECTRONICS GmbH & Co. KG   

Date created 2021-10-05 Date modified  2021-10-05 Page 110 of 250 
 

3-
00

0
9-

0
S

01
-D

0
3_

A
P

I 
D

oc
um

en
ta

ti
on

_D
2

V
5

-F
.d

oc
x 

 

Remarks 
If one of the transceivers is in the sleep mode and the transceiver detects a wake-up event, the notification 
event fcNotificationTypeFRWakeup is fired once only. Note that the transceiver state stays the 
same after closing the FlexCard and opening it again. When the FlexCard is powered off and on again, the 
transceiver state is reset. This e.g. happens during the stand-by of the computer. When you want to make 
sure that the FlexCard is in its default state, set the transceiver state to normal before starting the 
monitoring. 

See 
fcCC, fcTransceiverState, fcbFRMonitoringStart, fcbFRSetTransceiverState 

5.2.6 fcbFRGetTransceiverState 

This function gets the transceiver state of a selected Communication Controller individually for each 
channel. 

fcError fcbFRGetTransceiverState ( 
fcHandle hFlexCard, 
fcCC CC, 
fcTransceiverState* pStateChA, 
fcTransceiverState* pStateChB 

) 

Parameters 
hFlexCard 

[IN] Handle to a FlexCard 
CC 

[IN] Communication controller index 
pStateChA 

[OUT] The current transceiver state for channel A 
pStateChB 

[OUT] The current transceiver state for channel B 

Return values 
If the function succeeds, the return value is 0. If the value is <> 0, use the functions described in the section 
Error Handling to get extended error information. 

Remarks 
If one of the transceivers is in the sleep mode and the transceiver detects a wake-up event, the notification 
event fcNotificationTypeFRWakeup is fired once only. Note that the transceiver state stays the 
same after closing the FlexCard and opening it again. When the FlexCard is powered off and on again, the 
transceiver state is reset. This e.g. happens during the stand-by of the computer. When you want to make 
sure that the FlexCard is in its default state, set the transceiver state to normal before starting the 
monitoring. 

See 
fcCC, fcTransceiverState, fcbFRMonitoringStart, fcbFRSetTransceiverState 

5.3 Configuration 

This chapter describes the functions and data types used to configure both Communication Controller and 
hardware of a FlexCard. The configuration phase of a FlexCard is an essential part of its integration into a 
cluster and can not be skipped. Entering the bus parameters of an existent network is possible directly or 
by CHI-Import. If one of the FlexCard configuration settings does not match the cluster ones, the FlexCard 
may not be able to monitor the bus. Therefore, it is highly recommended to use a configuration tool for 
designing a new FlexRay network. FlexConfig Developer from STAR ELECTRONICS GmbH & Co. KG is such a 
tool that outputs a CHI file. It automatically validates and generates for each FlexRay parameter the 



 

 

Created by STAR ELECTRONICS GmbH & Co. KG   

Date created 2021-10-05 Date modified  2021-10-05 Page 111 of 250 
 

3-
00

0
9-

0
S

01
-D

0
3_

A
P

I 
D

oc
um

en
ta

ti
on

_D
2

V
5

-F
.d

oc
x 

 

corresponding register values of each node in a cluster. Manual configuration of the FlexCard is also a 
possibility but will be a complex, time-consuming, and error-prone method due to the large number of E-
Ray registers used for configuration. 

As the FlexCard uses the receive FIFO functionality from the Communication Controller to monitor the 
FlexRay frames, the fcBase API has to ensure that enough FIFO message buffers are configured, that 
means that not all message buffers are available for the user. Modifying the FIFO message buffers settings 
may affect the ability to correctly monitor the FlexRay bus.  

 

Figure 10: Overview fcbMsgBufCfg structure 

The message buffer RAM is 2048 32-bit words in total. It contains a 16 byte administration data structure 
for each message buffer, the rest may be used for the payload. This leads to a possible maximum 
configuration for example of 30 message buffers with 254 byte payload, 56 message buffers with 128 byte 
payload, or 128 message buffers with 48 byte payload. For further information on configuration of the 
message RAM see [5] chapter 5.12. 

5.3.1 Constants 

5.3.1.1 fcPayloadMaximum 
Maximum number of 2-byte payload data words 

const fcByte fcPayloadMaximum = 127 



 

 

Created by STAR ELECTRONICS GmbH & Co. KG   

Date created 2021-10-05 Date modified  2021-10-05 Page 112 of 250 
 

3-
00

0
9-

0
S

01
-D

0
3_

A
P

I 
D

oc
um

en
ta

ti
on

_D
2

V
5

-F
.d

oc
x 

 

5.3.2 Enumerations 

5.3.2.1 fcChannel 
This enumeration defines the available channel combination of the FlexCard. 

Typedef enum fcChannel 
{ 

fcChannelNone = 0x00, 
fcChannelA    = 0x01, 
fcChannelB    = 0x02, 
fcChannelBoth = fcChannelA | fcChannelB, 

} fcChannel; 

Members 
fcChannelNone 

No FlexRay channel selected 
fcChannelA 

Only FlexRay channel A is selected 
fcChannelB 

Only FlexRay channel B is selected 
fcChannelBoth 

FlexRay channel A and B are selected 

See Also 
fcMsgBufCfg 

5.3.2.2 fcWakeupStatus 
This enumeration defines the possible Communication Controller wake-up states (FlexRay Protocol 
Specification: vPOC!WakeupStatus). For more details about Communication Controller wake-up states, 
please refer to [3]. 

Typedef enum fcWakeupStatus 
{ 

fcWakeupStatusUndefined = 0, 
fcWakeupStatusReceiveHeader, 
fcWakeupStatusReceiveWUP, 
fcWakeupStatusCollisionHeader, 
fcWakeupStatusCollisionWUP, 
fcWakeupStatusCollisionUnknown 
fcWakeupStatusTransmitted, 

} fcWakeupStatus; 

Members 
fcWakeupStatusUndefined 

FlexRay Protocol Specification: UNDEFINED 
fcWakeupStatusReceiveHeader 

FlexRay Protocol Specification: RECEIVE_HEADER 
fcWakeupStatusReceiveWUP 

FlexRay Protocol Specification: RECEIVE_WUP 
fcWakeupStatusCollisionHeader 

FlexRay Protocol Specification: COLLISION_HEADER 
fcWakeupStatusCollisionWUP 

FlexRay Protocol Specification: COLLISION_WUP 
fcWakeupStatusCollisionUnknown 

FlexRay Protocol Specification: COLLISION_UNKNOWN 
fcWakeupStatusTransmitted 

FlexRay Protocol Specification: TRANSMITTED 

See Also 
fcStatusWakeupInfo, fcStatusPacket 



 

 

Created by STAR ELECTRONICS GmbH & Co. KG   

Date created 2021-10-05 Date modified  2021-10-05 Page 113 of 250 
 

3-
00

0
9-

0
S

01
-D

0
3_

A
P

I 
D

oc
um

en
ta

ti
on

_D
2

V
5

-F
.d

oc
x 

 

5.3.2.3 fcTransceiverState 
This enumeration defines the different states of the FlexRay transceivers. 

Typedef enum fcTransceiverState 
{ 

fcTransceiverNormal, 
fcTransceiverSleep, 

} fcTransceiverState; 

Members 
fcTransceiverNormal 

Transceiver is in normal mode and can transmit and receive data via the FlexRay bus. 
fcTransceiverSleep 

Transceiver is in low power mode and is not able to transmit and receive data but is able to detect 
wake-up events on the bus. If a wake-up is detected the event fcNotificationTypeFRWakeup 
is fired. 

See Also 
fcbFRSetTransceiverState, fcbFRGetTransceiverState 

 

 

Information 

This enumeration is initially supported by FlexCard API version S2V0-F. 

 

5.3.2.4 fcFRBaudRate 
This enumeration defines the various baud rates on the FlexRay bus. 

Typedef enum fcFRBaudRate 
{ 
 fcFRBaudRateNone = 0, 
 fcFRBaudRate2M5, 
 fcFRBaudRate5M, 
 fcFRBaudRate10M, 
} fcFRBaudRate; 

Members 
fcFRBaudRateNone 

No baud rate defined 
fcFRBaudRate2M5 

Defines the baud rate 2.5 Mbit/s 
fcFRBaudRate5M 

Defines the baud rate 5 Mbit/s 
fcFRBaudRate10M 

Defines the baud rate 10 Mbit/s 

See Also 
fcFRCcConfig 

5.3.2.5 fcFRMsgBufCfgMode 
This enumeration defines the available message buffer configuration modes with the FlexCard fcBase API. 
In normal mode the message buffer configuration is very strict and safe; in expert mode some special 
configurations are allowed. These message buffer configuration modes can be binary Ored. 



 

 

Created by STAR ELECTRONICS GmbH & Co. KG   

Date created 2021-10-05 Date modified  2021-10-05 Page 114 of 250 
 

3-
00

0
9-

0
S

01
-D

0
3_

A
P

I 
D

oc
um

en
ta

ti
on

_D
2

V
5

-F
.d

oc
x 

 

Typedef enum fcFRMsgBufCfgMode 
{ 
 fcFRMsgBufCfgModeNone = 0, 
 fcFRMsgBufCfgModeNormal = fcFRMsgBufCfgModeNone, 
 fcFRMsgBufCfgModeUnequalStaticPayloadLength = 1, 
 fcFRMsgBufCfgModeReconfigurationDuringMonitoring = 2, 
 fcFRMsgBufCfgModeCycleMultiplexInStartupSyncFrame = 4, 
 fcFRMsgBufCfgModeAll = fcFRMsgBufCfgModeUnequalStaticPayloadLength | 
        fcFRMsgBufCfgModeReconfigurationDuringMonitoring | 
        fcFRMsgBufCfgModeCycleMultiplexInStartupSyncFrame, 
 fcFRMsgBufCfgModeExpert = fcFRMsgBufCfgModeAll, 
} fcFRMsgBufCfgMode; 

Members 
fcFRMsgBufCfgModeNone 
fcFRMsgBufCfgModeNormal 

Normal (safe) message buffer configuration mode. 
fcFRMsgBufCfgModeUnequalStaticPayloadLength 

Allows transmit message buffer configurations in static segment with PayloadLength between 0 and 
PayloadLengthMax. For further description see fcMsgBufCfgTx and fcMsgBufCfgRx. 

fcFRMsgBufCfgModeReconfigurationDuringMonitoring 
Allows extended reconfigurations of message buffers during monitoring. Is this mode set, message 
buffer transmission and reception can be configured with parameter ChannelFilter in normal 
active mode. For further description see fcMsgBufCfg. 

fcFRMsgBufCfgModeCycleMultiplexInStartupSyncFrame 
Allows extended configurations of start-up/sync message buffers. Is this mode set, cycle counter 
filtering for more than two start-up/sync message buffers is possible. A reconfiguration of start-
up/sync isn’t allowed while monitoring is active. For further description see fcMsgBufCfg. 

fcFRMsgBufCfgModeAll 
fcFRMsgBufCfgModeExpert 

Expert (unsafe) message buffer configuration mode 

See Also 
fcbFRSetMsgBufCfgMode, fcMsgBufCfg, fcMsgBufCfgTx, fcMsgBufCfgRx 

 

 

Information 

This enumeration is initially supported by FlexCard API version S6V1-F. 

 

5.3.2.6 fcMsgBufType 

For the transmission and reception of FlexRay frames the Communication Controller provides different 
types of message buffers. Each message buffer can be assigned with one of the following specific types. 

Typedef enum fcMsgBufType 
{ 

fcMsgBufNone, 
fcMsgBufRx, 
fcMsgBufTx, 
fcMsgBufFifo, 

} fcMsgBufType; 

Members 
fcMsgBufNone 

The message buffer is not used. 
fcMsgBufRx 

The message buffer is used as a receive buffer (e.g. to analyse a specific frame). 
fcMsgBufTx 

The message buffer is used as a transmit buffer (e.g. to transmit a message on a specific 
communication slot). 



 

 

Created by STAR ELECTRONICS GmbH & Co. KG   

Date created 2021-10-05 Date modified  2021-10-05 Page 115 of 250 
 

3-
00

0
9-

0
S

01
-D

0
3_

A
P

I 
D

oc
um

en
ta

ti
on

_D
2

V
5

-F
.d

oc
x 

 

fcMsgBufFifo 
The message buffer is used as a receive FIFO buffer. In that case, it will receive frames from 
different communication slots. 
 

 

Information 

In certain cases, it is not possible to receive all frames with only receive message buffers. To 
ensure that all frames will be received, we recommend to configure some FIFO message buffers. 
 

See Also 
fcMsgBufCfg 

5.3.2.7 fcMsgBufTxMode 

This enumeration defines the different modes of transmission. 

Typedef enum fcMsgBufTxMode 
{ 

fcMsgBufTxSingleShot, 
fcMsgBufTxContinous, 

}fcMsgBufTxMode; 

Members 
fcMsgBufTxSingleShot 

Frame is transmitted once only if its corresponding message buffer content has been set and both 
frame id and cycle filter are matching. The function fcbFRTransmit sets the content of a given 
message buffer. 

fcMsgBufTxContinous 
Frame is transmitted each time when both the frame id and cycle filter are matching, regardless if its 
corresponding message buffer content has been set or not.  

See Also 
fcMsgBufCfgTx 

5.3.2.8 fcCyclePos 

This enumeration defines various positions in a FlexRay cycle. 



 

 

Created by STAR ELECTRONICS GmbH & Co. KG   

Date created 2021-10-05 Date modified  2021-10-05 Page 116 of 250 
 

3-
00

0
9-

0
S

01
-D

0
3_

A
P

I 
D

oc
um

en
ta

ti
on

_D
2

V
5

-F
.d

oc
x 

 

Typedef enum fcCyclePos 
{ 
 fcCyclePosNotDefined = 0, 
  
 fcCyclePosStaticSlot, 
 fcCyclePosDynamicMiniSlot, 
  
 fcCyclePosEndStaticSegment, 
 fcCyclePosStartDynamicSegment, 
 fcCyclePosEndDynamicSegment, 
 fcCyclePosStartSymbolWindow, 
 fcCyclePosEndSymbolWindow, 
 fcCyclePosStartNetworkIdleTime, 
} fcCyclePos; 

Members 
fcCyclePosNotDefined 

No cycle position defined 
fcCyclePosStaticSlot 

Defines the start of a static slot 
fcCyclePosDynamicMiniSlot 

Defines the start of a dynamic mini slot 
fcCyclePosEndStaticSegment 

Defines the end of the static segment 
fcCyclePosStartDynamicSegment 

Defines the start of the dynamic segment 
fcCyclePosEndDynamicSegment 

Defines the end of the dynamic segment 
fcCyclePosStartSymbolWindow 

Defines the start of the symbol window 
fcCyclePosEndSymbolWindow 

Defines the end of the symbol window 
fcCyclePosStartNetworkIdleTime 

Defines the start of the network idle time 

See Also 
fcbFRCalculateMacrotickOffset 

 

 

Information 

This enumeration is initially supported by FlexCard API version S4V0-F. 

 

5.3.3 Structures 

5.3.3.1 fcFRCcConfig 

This structure describes the configuration of the FlexRay Communication Controller. The struct contains 
the variables from the FlexRay specification. The FlexCard driver makes the conversion to/from the 
registers the FlexRay core E-Ray uses. For example, gListenNoise is not the same in the FlexRay 
specification compared to the E-Ray register. 

The variable descriptions were extracted from [5] (Bosch E-Ray FlexRay IP-Module User’s Manual). 

Typedef struct fcFRCcConfig 
{ 
 fcFRBaudRate BaudRate; 
 fcDword gdActionPointOffset; 
 fcDword gdCASRxLowMax; 
 fcDword gdDynamicSlotIdlePhase; 
 fcDword gdMinislot; 
 fcDword gdMinislotActionPointOffset; 



 

 

Created by STAR ELECTRONICS GmbH & Co. KG   

Date created 2021-10-05 Date modified  2021-10-05 Page 117 of 250 
 

3-
00

0
9-

0
S

01
-D

0
3_

A
P

I 
D

oc
um

en
ta

ti
on

_D
2

V
5

-F
.d

oc
x 

 

 fcDword gdNIT; 
 fcDword gdStaticSlot; 
 fcDword gdTSSTransmitter; 
 fcDword gdWakeupSymbolRxIdle; 
 fcDword gdWakeupSymbolRxLow; 
 fcDword gdWakeupSymbolRxWindow; 
 fcDword gdWakeupSymbolTxIdle; 
 fcDword gdWakeupSymbolTxLow; 
 fcDword gColdStartAttempts; 
 fcDword gListenNoise; 
 fcDword gMacroPerCycle; 
 fcDword gMaxWithoutClockCorrectionFatal; 
 fcDword gMaxWithoutClockCorrectionPassive; 
 fcDword gNetworkManagementVectorLength; 
 fcDword gNumberOfMinislots; 
 fcDword gNumberOfStaticSlots; 
 fcDword gOffsetCorrectionStart; 
 fcDword gPayloadLengthStatic; 
 fcDword gSyncNodeMax; 
 fcDword pdAcceptedStartupRange; 
 fcDword pdListenTimeout; 
 fcDword pdMaxDrift; 
 fcDword pAllowHaltDueToClock; 
 fcDword pAllowPassiveToActive; 
 fcChannel pChannelsMTS; 
 fcChannel pChannels; 
 fcDword pClusterDriftDamping; 
 fcDword pDecodingCorrection; 
 fcDword pDelayCompensationA; 
 fcDword pDelayCompensationB; 
 fcDword pExternOffsetCorrection; 
 fcDword pExternRateCorrection; 
 fcDword pKeySlotUsedForStartup; //NOT USED. 
 fcDword pKeySlotUsedForSync; //NOT USED. 
 fcDword pLatestTx; 
 fcDword pMacroInitialOffsetA; 
 fcDword pMacroInitialOffsetB; 
 fcDword pMicroInitialOffsetA; 
 fcDword pMicroInitialOffsetB; 
 fcDword pMicroPerCycle; 
 fcDword pOffsetCorrectionOut; 
 fcDword pRateCorrectionOut; 
 fcDword pSingleSlotEnabled; 
 fcChannel pWakeupChannel; 
 fcDword pWakeupPattern; 
 fcDword vExternOffsetControl; 
 fcDword vExternRateControl; 
 
 fcDword Reserved[16]; 
} fcFRCcConfig; 

Members 
BaudRate 

Configures the baud rate on the FlexRay bus. 
gdActionPointOffset 

Configures the action point offset in macroticks within static slots and symbol window. Must be 
identical in all nodes of a cluster. Valid values are 1 to 63 MT. 

gdCASRxLowMax 
Configures the upper limit of the acceptance window for a collision avoidance symbol (CAS). Valid 
values are 67 to 99 bit times. 

gdDynamicSlotIdlePhase 
The duration of the dynamic slot idle phase has to be greater or equal than the idle detection time. 
Must be identical in all nodes of a cluster. Valid values are 0 to 2 Minislot. 

gdMinislot 
Configures the duration of a minislot in macroticks. The minislot length must be identical in all 
nodes of a cluster. Valid values are 2 to 63 MT. 



 

 

Created by STAR ELECTRONICS GmbH & Co. KG   

Date created 2021-10-05 Date modified  2021-10-05 Page 118 of 250 
 

3-
00

0
9-

0
S

01
-D

0
3_

A
P

I 
D

oc
um

en
ta

ti
on

_D
2

V
5

-F
.d

oc
x 

 

gdMinislotActionPointOffset 
Configures the action point offset in macroticks within the minislots of the dynamic segment. Must 
be identical in all nodes of a cluster. Valid values are 1 to 31 MT. 

gdNIT 
Configures the starting point of the Network Idle Time NIT at the end of the communication cycle 
expressed in terms of macroticks from the beginning of the cycle. The start of NIT is recognized if 
Macrotick = gMacroPerCycle – gdNIT -1 and the increment pulse of Macrotick is set. Must be 
identical in all nodes of a cluster. Valid values of “gMacroPerCycle – gdNIT -1” are 7 to 15997 MT. 
Therefore, valid values for the parameter gdNIT are 2 to 805 MT. 

gdStaticSlot 
Configures the duration of a static slot in macroticks. The static slot length must be identical in all 
nodes of a cluster. Valid values are 4 to 659 MT. 

gdTSSTransmitter 
Configures the duration of the Transmission Start Sequence (TSS) in terms of bit times (1 bit time = 
4 μT = 100ns@10Mbps). Must be identical in all nodes of a cluster. Valid values are 3 to 15 bit 
times. 

gdWakeupSymbolRxIdle 
Configures the number of bit times used by the node to test the duration of the idle phase of the 
received wake-up symbol. Must be identical in all nodes of a cluster. Valid values are 14 to 59 bit 
times. 

gdWakeupSymbolRxLow 
Configures the number of bit times used by the node to test the duration of the low phase of the 
received wake-up symbol. Must be identical in all nodes of a cluster. Valid values are 10 to 55 bit 
times. 

gdWakeupSymbolRxWindow 
Configures the number of bit times used by the node to test the duration of the received wake-up 
pattern. Must be identical in all nodes of a cluster. Valid values are 76 to 301 bit times. 

gdWakeupSymbolTxIdle 
Configures the number of bit times used by the node to transmit the idle phase of the wake-up 
symbol. Must be identical in all nodes of a cluster. Valid values are 45 to 180 bit times. 

gdWakeupSymbolTxLow 
Configures the number of bit times used by the node to transmit the low phase of the 
wake-up symbol. Must be identical in all nodes of a cluster. Valid values are 15 to 60 bit times. 

gColdStartAttempts 
Configures the maximum number of attempts that a cold starting node is permitted to try to start-up 
the network without receiving any valid response from another node. It can be modified in 
DEFAULT_CONFIG or CONFIG state only. Must be identical in all nodes of a cluster. Valid values are 
2 to 31. 

gListenNoise 
Configures the upper limit for start-up and wake-up listen timeout in the presence of noise 
expressed as a multiple of pdListenTimeout. The range for gListenNoise is 2 to 16. 

gMacroPerCycle 
Configures the duration of one communication cycle in macroticks. The cycle length must be 
identical in all nodes of a cluster. Valid values are 10 to 16000 MT. 

gMaxWithoutClockCorrectionFatal 
Defines the number of consecutive even/odd cycle pairs with missing clock correction terms that 
will cause a transition from NORMAL_ACTIVE or NORMAL_PASSIVE to HALT state. Must be identical 
in all nodes of a cluster. Valid values are 1 to 15 cycle pairs. 

gMaxWithoutClockCorrectionPassive 
Defines the number of consecutive even/odd cycle pairs with missing clock correction terms that 
will cause a transition from NORMAL_ACTIVE to NORMAL_PASSIVE state. Must be identical in all 
nodes of a cluster. Valid values are 1 to 15 cycle pairs. 

gNetworkManagementVectorLength 
Configures the length of the NM vector. The configured length must be identical in all nodes of a 
cluster. Valid values are 0 to 12 bytes. 



 

 

Created by STAR ELECTRONICS GmbH & Co. KG   

Date created 2021-10-05 Date modified  2021-10-05 Page 119 of 250 
 

3-
00

0
9-

0
S

01
-D

0
3_

A
P

I 
D

oc
um

en
ta

ti
on

_D
2

V
5

-F
.d

oc
x 

 

gNumberOfMinislots 
Configures the number of minislots within the dynamic segment of a cycle. The number of minislots 
must be identical in all nodes of a cluster. Valid values are 0 to 7986. 

gNumberOfStaticSlots 
Configures the number of static slots in a cycle. At least 2 coldstart nodes must be configured to 
start-up a FlexRay network. The number of static slots must be identical in all nodes of a cluster. 
Valid values are 2 to 1023. 

gOffsetCorrectionStart 
Determines the start of the offset correction within the NIT phase, calculated from start of cycle. 
Must be identical in all nodes of a cluster. Valid values are 9 to 15999 MT. 

gPayloadLengthStatic 
Configures the cluster-wide payload length for all frames sent in the static segment in double bytes. 
The payload length must be identical in all nodes of a cluster. Valid values are 0 to 127. 

gSyncNodeMax 
Maximum number of frames within a cluster with sync frame indicator Bit SYN set to ’1’. Must be 
identical in all nodes of a cluster. Valid values are 2 to 15. 

pdAcceptedStartupRange 
Number of microticks constituting the expanded range of measured deviation for start-up frames 
during integration. Valid values are 0 to 1875 μT. 

pdListenTimeout 
Configures wake-up/start-up listen timeout in μT. The range for pdListenTimeout is 1284 to 
1283846 μT. 

pdMaxDrift 
Maximum drift offset between two nodes that operate with unsynchronized clocks over one 
communication cycle in μT. Valid values are 2 to 1923 μT. 

pAllowHaltDueToClock 
Controls the transition to HALT state due to a clock synchronization error. Valid values are 0 to 1. If 
a clock sync error occurred the CC will enter HALT state or enter/remain in NORMAL_PASSIVE 
state. 

pAllowPassiveToActive 
Defines the number of consecutive even/odd cycle pairs that must have valid clock correction terms 
before the CC is allowed to transit from NORMAL_PASSIVE to NORMAL_ACTIVE state. If set to zero 
the CC is not allowed to transit from NORMAL_PASSIVE to NORMAL_ACTIVE state. It can be 
modified in DEFAULT_CONFIG or CONFIG state only. Valid values are 0 to 31 even/odd cycle pairs. 

pChannelsMTS 
Selects channels for MTS symbol transmission. The flag is reset by default and may be modified only 
in DEFAULT_CONFIG or CONFIG state. 

pChannels 
Configures which channel the node is connected to. 

pClusterDriftDamping 
Configures the cluster drift damping value used in clock synchronization to minimize accumulation 
of rounding errors. Valid values are 0 to 20 μT. 

pDecodingCorrection 
Configures the decoding correction value used to determine the primary time reference point. Valid 
values are 14 to 143 μT. 

pDelayCompensationA 
Used to compensate for reception delays on the indicated channel. This covers assumed 
propagation delay up to cPropagationDelayMax for microticks in the range of 0.0125 to 
0.05μs. In practice, the minimum of the propagation delays of all sync nodes should be applied. 
Valid values are 0 to 200 μT. 

pDelayCompensationB 
Used to compensate for reception delays on the indicated channel. This covers assumed 
propagation delay up to cPropagationDelayMax for microticks in the range of 0.0125 to 
0.05μs. In practice, the minimum of the propagation delays of all sync nodes should be applied. 
Valid values are 0 to 200 μT. 



 

 

Created by STAR ELECTRONICS GmbH & Co. KG   

Date created 2021-10-05 Date modified  2021-10-05 Page 120 of 250 
 

3-
00

0
9-

0
S

01
-D

0
3_

A
P

I 
D

oc
um

en
ta

ti
on

_D
2

V
5

-F
.d

oc
x 

 

pExternOffsetCorrection 
Holds the external offset correction value in microticks to be applied by the internal clock 
synchronization algorithm. The value is subtracted / added from / to the calculated offset 
correction value. The value is applied during NIT. May be modified in DEFAULT_CONFIG or CONFIG 
state only. Valid values are 0 to 7 μT. 

pExternRateCorrection 
Holds the external rate correction value in microticks to be applied by the internal clock 
synchronization algorithm. The value is subtracted / added from / to the calculated rate correction 
value. The value is applied during NIT. May be modified in DEFAULT_CONFIG or CONFIG state only. 
Valid values are 0 to 7 μT. 

pKeySlotUsedForStartup 
Defines whether the key slot is used to transmit start-up frames. The Bit can be modified in 
DEFAULT_CONFIG or CONFIG state only. 
1 = Key slot used to transmit start-up frame, node is leading or following coldstarter 
0 = No start-up frame transmission in key slot, node is non-coldstarter 
Not used during configuration. Is set when configuring a message buffer. 

pKeySlotUsedForSync 
Defines whether the key slot is used to transmit sync frames. The Bit can be modified in 
DEFAULT_CONFIG or CONFIG state only. 
1 = Key slot used to transmit sync frame, node is sync node 
0 = No sync frame transmission in key slot, node is neither sync nor coldstart node 
Not used during configuration. Is set when configuring a message buffer. 

pLatestTx 
Configures the maximum minislot value allowed before inhibiting frame transmission in the dynamic 
segment of the cycle. There is no transmission in dynamic segment if it is set to zero. Valid values 
are 0 to 7981 minislots. 

pMacroInitialOffsetA 
Configures the number of macroticks between the static slot boundary and the subsequent 
macrotick boundary of the secondary time reference point based on the nominal macrotick duration. 
Must be identical in all nodes of a cluster. Valid values are 2 to 72 MT. 

pMacroInitialOffsetB 
Configures the number of macroticks between the static slot boundary and the subsequent 
macrotick boundary of the secondary time reference point based on the nominal macrotick duration. 
Must be identical in all nodes of a cluster. Valid values are 2 to 72 MT. 

pMicroInitialOffsetA 
Configures the number of microticks between the actual time reference point on channel A and the 
subsequent macrotick boundary of the secondary time reference point. The parameter depends on 
pDelayCompensationA and therefore has to be set for each channel independently. Valid values are 
0 to 240 μT. 

pMicroInitialOffsetB 
Configures the number of microticks between the actual time reference point on channel B and the 
subsequent macrotick boundary of the secondary time reference point. The parameter depends on 
pDelayCompensationB and therefore has to be set for each channel independently. Valid values are 
0 to 240 μT. 

pMicroPerCycle 
Configures the duration of the communication cycle in microticks. Valid values are 640 to 640000 
μT. 

pOffsetCorrectionOut 
Holds the maximum permitted offset correction value to be applied by the internal clock 
synchronization algorithm (absolute value). The CC checks only the internal offset correction value 
against the maximum offset correction value. Valid values are 5 to 15266 μT. 

pRateCorrectionOut 
Holds the maximum permitted rate correction value to be applied by the internal clock 
synchronization algorithm. The CC checks only the internal rate correction value against the 
maximum rate correction value (absolute value). Valid values are 2 to 1923 μT. 



 

 

Created by STAR ELECTRONICS GmbH & Co. KG   

Date created 2021-10-05 Date modified  2021-10-05 Page 121 of 250 
 

3-
00

0
9-

0
S

01
-D

0
3_

A
P

I 
D

oc
um

en
ta

ti
on

_D
2

V
5

-F
.d

oc
x 

 

pSingleSlotEnabled 
Selects the initial transmission slot mode. In SINGLE slot mode the CC may only transmit in the 
preconfigured key slot.  
1 = SINGLE Slot Mode (default after hard reset) 
0 = ALL Slot Mode. 

pWakeupChannel 
With this Bit the Host selects the channel on which the CC sends the Wakeup pattern. The CC 
ignores any attempt to change the status of this Bit when not in DEFAULT_CONFIG or CONFIG state. 
1 = Send wake-up pattern on channel B 
0 = Send wake-up pattern on channel A 

pWakeupPattern 
Configures the number of repetitions (sequences) of the Tx wake-up symbol. Valid values are 2 to 
63. 

vExternOffsetControl 
By setting this parameter the external offset correction is enabled as specified below. Should be 
modified only outside NIT. 
00, 01 = No external offset correction 
10 = External offset correction value subtracted from calculated offset correction value 
11 = External offset correction value added to calculated offset correction value. 

vExternRateControl 
By setting this parameter the external rate correction is enabled as specified below. Should be 
modified only outside NIT. 
00, 01 = No external rate correction 
10 = External rate correction value subtracted from calculated rate correction value 
11 = External rate correction value added to calculated rate correction value. 

Reserved[16] 
Reserved Dwords for possible later use. 

See Also 
fcbFRSetCcConfiguration, fcbFRGetCcConfiguration 

5.3.3.2 fcMsgBufCfgFifo 
This structure specifies the configuration of a FIFO buffer. The FIFO message buffers are used to receive 
FlexRay frames from different communication slots and allow therefore to receive more frames than 
message buffers exist. 

Typedef struct fcMsgBufCfgFifo 
{ 

fcDword FrameIdFilter : 11; 
fcDword RejectionMask : 11;  
fcDword PayloadLengthConfigured : 7; 
fcDword RejectInStaticSegment : 1;  
fcDword RejectNullFrames : 1;  
fcDword Reserved; 

}fcMsgBufCfgFifo; 

Members 
FrameIdFilter 

Defines the acceptance filter used for frame id rejection. A zero value means that no frame is 
rejected. It is recommended to use the extra acceptance and rejection filter functions and leave this 
parameter to zero. 

RejectionMask 
Specifies the relevant bits used for rejection filtering. It is recommended to use the extra 
acceptance and rejection filter functions and leave this parameter to zero. 

PayloadLengthConfigured 
Defines the maximum number of 2-byte payload words received. 

RejectInStaticSegment 
Set this flag to 1 to reject all received static frames of the FIFO. A zero value deactivates the FIFO 
static segment rejection. 



 

 

Created by STAR ELECTRONICS GmbH & Co. KG   

Date created 2021-10-05 Date modified  2021-10-05 Page 122 of 250 
 

3-
00

0
9-

0
S

01
-D

0
3_

A
P

I 
D

oc
um

en
ta

ti
on

_D
2

V
5

-F
.d

oc
x 

 

RejectNullFrames 
Set this flag to 1 to reject all received null frames of the FIFO. A zero value deactivates the FIFO null 
frame rejection. 

Reserved 
Reserved for future use. 
 

 

Information 

Modifying the FIFO configuration may affect the ability to receive all frames (e.g. setting the 
RejectInStaticSegment flag to 1 will disable the FlexCard to monitor frames in the static 
segment). Configuring (fcbFRConfigureMessageBuffer) the FIFO is only possible when the 
Communication Controller is in its configuration state, fcStateConfig. A reconfiguration 
(fcbFRReconfigureMessageBuffer) is allowed for this buffer type. The FIFO can be accessed 
with buffer ID 1 (if buffer ID 1 was not reconfigured to a different buffer type by user). 

See Also 
fcMsgBufCfg 

Example 
// Configure fifo receive buffers  
// -> Channels A+B, all frames (including null frames) on every cycles 
 
fcMsgBufCfg cfg; 
cfg.Type = fcMsgBufFifo; 
cfg.ChannelFilter = fcChannelBoth; 
cfg.CycleCounterFilter = 0; 
 
cfg.Fifo.FrameIdFilter = 0; 
cfg.Fifo.RejectionMask = 0; 
cfg.Fifo.PayloadLengthConfigured = 127; 
cfg.Fifo.RejectInStaticSegment = 0; 
cfg.Fifo.RejectNullFrames = 0; 
 
unsigned int bufferIdx = 0; 
fcError e = fcbFRConfigureMessageBuffer(hFlexCard,fcCC1,&bufferIdx,cfg); 

5.3.3.3 fcMsgBufCfgRx 

This structure specifies the configuration of a receive message buffer. This buffer type should be used to 
analyse a specific communication slot (=frame id). 

Typedef struct fcMsgBufCfgRx 
{ 
 fcDword FrameId : 11; 
 fcDword PayloadLengthConfigured : 7; 

fcDword PayloadLengthMax : 7; 
 fcDword RxAcknowledgeEnable: 1; 
 fcDword Reserved; 
} fcMsgBufCfgRx; 

Members 
FrameId 

Defines the slot (=frame id) to be received in this message buffer. With the function 
fcbFRReconfigureMessageBuffer, this parameter can be changed while monitoring is active. 

PayloadLengthConfigured 
Defines the number of 2-byte payload words to be received. This parameter can be changed while 
monitoring is active. To do so, call the function fcbFRReconfigureMessageBuffer and set this 
parameter with a value between 0 and PayloadLengthMax. The reconfiguration of this 
parameter for message buffers assigned to the static segment is only allowed with 
fcFRMsgBufCfgModeUnequalStaticPayloadLength. 



 

 

Created by STAR ELECTRONICS GmbH & Co. KG   

Date created 2021-10-05 Date modified  2021-10-05 Page 123 of 250 
 

3-
00

0
9-

0
S

01
-D

0
3_

A
P

I 
D

oc
um

en
ta

ti
on

_D
2

V
5

-F
.d

oc
x 

 

PayloadLengthMax 
Defines the maximum payload reserved for this buffer in the message ram. This E-Ray specific 
parameter sets the range for the payload reconfiguration. This parameter can not be changed while 
monitoring is active.  

RxAcknowledgeEnable 
This flag is obsolete and can be ignored. 
Enables message buffer interrupt. This flag must be set to 1 to allow the function fcbReceive to get 
the received frame. This parameter can be changed while monitoring is active. To do so, call the 
function fcbFRReconfigureMessageBuffer. 

Reserved 
Reserved for future use. 

See Also 
fcMsgBufCfg 

 

 

Information 

FlexCards cannot receive null frames with receive message buffers. For receiving null frames a 
matched FIFO message buffer configuration is necessary. 
 

5.3.3.4 fcMsgBufCfgTx 

This structure specifies the configuration of a transmit message buffer. This buffer type is used to transmit 
a frame on a specific communication slot. 

Typedef struct fcMsgBufCfgTx 
{ 
 fcDword FrameId : 11; 
 fcDword PayloadLength : 7; 
 fcDword PayloadLengthMax : 7; 
 fcDword PayloadPreambleIndicator : 1; 
 fcDword SyncFrameIndicator : 1; 
 fcDword StartupFrameIndicator : 1; 
 fcDword TxAcknowledgeEnable: 1; 
 fcMsgBufTxMode TransmissionMode; 
 fcDword TxAcknowledgeShowNullFrames : 1; 
 fcDword TxAcknowledgeShowPayload : 1; 
 fcDword Reserved : 29; 
} fcMsgBufCfgTx; 

Members 
FrameId 

Defines the slot (=frame id) assigned to the transmit message buffer. With the function 
fcbFRReconfigureMessageBuffer, this parameter can be changed while monitoring is active. 

PayloadLength 
Defines the number of 2-byte payload words to be transmitted. This parameter can be changed while 
monitoring is active. To do so, call the function fcbFRReconfigureMessageBuffer and set this 
parameter with a value between 0 and PayloadLengthMax. The reconfiguration of this 
parameter for message buffers assigned to the static segment is only allowed with 
fcFRMsgBufCfgModeUnequalStaticPayloadLength. 

PayloadLengthMax 
Defines the maximum payload reserved for this buffer in the message ram. This E-Ray specific 
parameter sets the range for the payload reconfiguration. This parameter can not be changed while 
monitoring is active. 

PayloadPreambleIndicator 
This parameter is protocol specific. For more information, refer to FlexRay Protocol Specification. With 
the function fcbFRReconfigureMessageBuffer, this parameter can be changed while monitoring 
is active.  



 

 

Created by STAR ELECTRONICS GmbH & Co. KG   

Date created 2021-10-05 Date modified  2021-10-05 Page 124 of 250 
 

3-
00

0
9-

0
S

01
-D

0
3_

A
P

I 
D

oc
um

en
ta

ti
on

_D
2

V
5

-F
.d

oc
x 

 

SyncFrameIndicator 
Set this flag to 1 to indicate that the frame is a sync frame. This parameter can not be changed 
while monitoring is active. 

StartupFrameIndicator 
Set this flag to 1 to indicate that the frame is a start-up frame. This parameter can not be changed 
while monitoring is active. 

TxAcknowledgeEnable 
Set this flag to 1 to get an acknowledge packet (fcTxAcknowledgePacket) once a frame is 
transmitted (includes null frames). With the function fcbFRReconfigureMessageBuffer, this 
parameter can be changed while monitoring is active. This feature is only available on FlexCard based 
on E-Ray Communication Controller. 

TransmissionMode 
Type of transmission (refer to fcMsgBufTxMode). With the function 
fcbFRReconfigureMessageBuffer, this parameter can be changed while monitoring is active. 

TxAcknowledgeShowNullFrames 
Set this flag to 1 to get TxAcknowledge packet for transmitted null frames. This flag is only 
evaluated if the TxAcknowledgeEnable flag is set. 

TxAcknowledgeShowPayload 
Set this flag to 1 to get the payload of the transmitted frame. The payload length of generated 
TxAcknowledge packet will otherwise be set to zero. This flag is only evaluated if the 
TxFrameEnable flag is set. 

Reserved 
Reserved for future use 

See Also 
fcMsgBufCfg 

5.3.3.5 fcMsgBufCfg 
This structure describes the configuration of a message buffer. 

Typedef struct fcMsgBufCfg 
{ 
 fcMsgBufType Type; 
 fcChannel ChannelFilter; 
 fcDword CycleCounterFilter : 7; 
 
 union 
 { 
  fcMsgBufCfgFifo Fifo; 
  fcMsgBufCfgRx   Rx; 
  fcMsgBufCfgTx   Tx; 
 }; 
 
 fcDword Reserved[2]; 
} fcMsgBufCfg; 

Members 
Type 

Defines the buffer type (FIFO, receive or transmit buffer) 
ChannelFilter 

Defines the channel(s) assigned to this buffer. With the function 
fcbFRReconfigureMessageBuffer, this parameter can only be changed while monitoring is 
active for receive and transmit buffer. For the configuration of a transmit buffer or a receive 
message buffer assigned to a dynamic frame fcChannelBoth isn’t allowed. With 
fcChannelNone the buffer can be en- or disabled during an active monitoring. The 
reconfiguration of this parameter with fcChannelNone is only allowed with 
fcFRMsgBufCfgModeReconfigurationDuringMonitoring. 

CycleCounterFilter 
Defines the filter used by the message buffer for cycle counter filtering. A zero value means that no 
cycle counter filtering is used. The cycle counter filter is composed of two parameters. The first one 



 

 

Created by STAR ELECTRONICS GmbH & Co. KG   

Date created 2021-10-05 Date modified  2021-10-05 Page 125 of 250 
 

3-
00

0
9-

0
S

01
-D

0
3_

A
P

I 
D

oc
um

en
ta

ti
on

_D
2

V
5

-F
.d

oc
x 

 

determines the cycle repetition and the second one the offset (the first cycle). The cycle repetition 
must be given in the form of 2x where x is a number between 0 and 6. The offset must be less than 
the cycle repetition value. The two values are added. With the function 
fcbFRReconfigureMessageBuffer, this parameter can only be changed while monitoring is 
active for receive and transmit buffer. 

Fifo 
FIFO buffer configuration 

Rx 
Receive buffer configuration 

Tx 
Transmit buffer configuration 

Reserved 
Reserved for future use 

See Also 
fcbFRConfigureMessageBuffer, fcbFRReconfigureMessageBuffer, fcbFRGetMessageBuffer, 
fcMsgBufType, fcMsgBufCfgFifo, fcMsgBufCfgRx, fcMsgBufCfgTx, fcFRMsgBufCfgMode 

Example 
// The following code configures a transmit buffer, which only transmits on cycles 
6,14,22,30, … 
 
fcMsgBufCfg cfg; 
cfg.Type = fcMsgBufTx; 
cfg.ChannelFilter = fcChannelA; 
 
 
// Repetition: each 8 cycles 
// Offset: 6 (First cycle will be cycle number 6) 
 
cfg.CycleCounterFilter = 0x8 + 0x6; 
 
cfg.Tx.FrameId = 61; 
cfg.Tx.PayloadLength = 10; 
cfg.Tx.PayloadLengthMax = 127; 
cfg.Tx.PayloadPreambleIndicator = 0; 
cfg.Tx.SyncFrameIndicator = 0; 
cfg.Tx.StartupFrameIndicator = 0; 
cfg.Tx.TxAcknowledgeEnable= 0; 
cfg.Tx.TransmissionMode = fcMsgBufTxSingleShot; 
 
 
unsigned int bufferIdx = 0; 
fcError e = fcbFRConfigureMessageBuffer(hFlexCard,fcCC1,&bufferIdx,cfg); 

 
// The following code configures 2 sync frame buffers with the same frame id // but 
with different channelfilters. This way a different payload can be sent // on the sync 
frame id on channel a and on channel b. 
  
fcMsgBufCfg cfg; 
cfg.Type = fcMsgBufTx; 
//first message buffer on channel a 
cfg.ChannelFilter = fcChannelA; 
cfg.CycleCounterFilter = 0; 
cfg.Tx.FrameId = 1;//this id has to be in the static range 
cfg.Tx.PayloadLength = 16;//payload length in the static segment 
cfg.Tx.PayloadLengthMax = 16; 
cfg.Tx.PayloadPreambleIndicator = 0; 
cfg.Tx.SyncFrameIndicator = 1; 
cfg.Tx.StartupFrameIndicator = 1; 
cfg.Tx.TxAcknowledgeEnable= 1; 
cfg.Tx.TransmissionMode = fcMsgBufTxSingleShot; 
 
unsigned int bufferIdx = 0; 
fcError e = fcbFRConfigureMessageBuffer(hFlexCard,fcCC1,&bufferIdx,cfg); 



 

 

Created by STAR ELECTRONICS GmbH & Co. KG   

Date created 2021-10-05 Date modified  2021-10-05 Page 126 of 250 
 

3-
00

0
9-

0
S

01
-D

0
3_

A
P

I 
D

oc
um

en
ta

ti
on

_D
2

V
5

-F
.d

oc
x 

 

 
//second message buffer on channel b 
cfg.ChannelFilter = fcChannelB; 
e = fcbFRConfigureMessageBuffer(hFlexCard,fcCC1,&bufferIdx,cfg); 

5.3.3.6 fcCcTimerCfg 
This structure describes the configuration of a Communication Controller timer. 

Typedef struct fcCcTimerCfg 
{ 
 fcDword ContinuousMode : 1; 
 fcDword CycleCounterFilter : 7; 
 fcDword MacrotickOffset : 14; 
} fcCcTimerCfg; 

Members 
ContinuousMode 

Defines the Communication Controller timer mode. Set to 1 for continuous mode or 0 for single-shot 
mode. 

CycleCounterFilter 
Defines the filter used by the CC timer for cycle counter filtering. A zero value means that no cycle 
counter filtering is used. The cycle counter filter is composed of two parameters. The first one 
determines the cycle repetition and the second one the offset (the first cycle). The cycle repetition 
must be given in the form of 2^x where x is a number between 0 and 6. The offset must be less than 
the cycle repetition value. 

MacrotickOffset 
Defines the macrotick offset from the beginning of the cycle when the CC timer interrupt must 
occur. The CC timer interrupt occurs at this offset for each cycle of the cycle counter filter. 

See Also 
fcbFRSetCcTimerConfig, fcbFRGetCcTimerConfig, fcbFRCalculateMacrotickOffset 

 

 

Information 

This structure is initially supported by FlexCard API version S4V0-F. 

 

5.3.4 fcbFRSetCcRegister 

This function writes a value in each register of the selected Communication Controller. Not every register 
can be written (e.g. the registers belonging to the message buffer configuration or some interrupt settings). 

fcError fcbFRSetCcRegister( 
fcHandle hFlexCard, 
fcCC CC, 
fcDword address, 
fcDword value 

) 

Parameters 
hFlexCard 

[IN] Handle to a FlexCard 
CC 

[IN] Communication controller index 
address 

[IN] Address of the CC register to be written. Must be a multiple of 4 bytes, otherwise an error will 
be returned 

value 
[IN] The value to be written 



 

 

Created by STAR ELECTRONICS GmbH & Co. KG   

Date created 2021-10-05 Date modified  2021-10-05 Page 127 of 250 
 

3-
00

0
9-

0
S

01
-D

0
3_

A
P

I 
D

oc
um

en
ta

ti
on

_D
2

V
5

-F
.d

oc
x 

 

Return values 
If the function succeeds, the return value is 0. If the value is <> 0, use the functions described in the section 
Error Handling to get extended error information. If the register can not be written the error code 
REGISTER_NOT_WRITEABLE is returned. 

Remarks 
For a register description, refer to the specification of the corresponding Communication Controller. 
Modifying one of the following registers will reset message buffers with their default settings (FIFO receive 
buffers). The user’s message buffers configuration will not be valid anymore. 
Bosch E-Ray: MHDC (0x0098) and GTUC7 (0x00B8). 
 
On FlexCard driver version Windows S6V4-F or later, on E-Ray, the register GTUC11 (0x00C8) may be 
read/written when monitoring is not activated. After monitoring, it may be read/written, but for the write 
operation, only External Offset Correction Control and External Rate Correction Control may be changed. 
External Offset Correction and External Rate Correction may not be modified. 
 

 

Information 

Not all registers of a Communication Controller can be set. The base API will modify some 
parameters so that the operating of the FlexCard is guaranteed (e.g. interrupt settings). Access is 
denied to all registers which are used for message buffer configuration. 

See Also 
fcCC, fcbFRGetCcRegister 

5.3.5 fcbFRGetCcRegister 

This function reads and returns the content of a given register of the selected Communication Controller. 

On the FlexCard PXIe3/PCIe3 in the FlexDevice mode, this function is only allowed for debugging 
purposes. It should not be used in this case because the decoder and the communication controller should 
be independent. 

fcError fcbFRGetCcRegister( 
fcHandle hFlexCard, 
fcCC CC, 
fcDword address, 
fcDword* pValue 

) 

Parameters 
hFlexCard 

[IN] Handle to a FlexCard 
CC 

[IN] Communication controller index 
address 

[IN] Address of the CC register to be read. Must be a multiple of 4 bytes, otherwise an error will be 
returned 

pValue 
[OUT] The content of the desired CC register. 

Return values 
If the function succeeds, the return value is 0. If the value is <> 0, use the functions described in the section 
Error Handling to get extended error information. If the register cannot be read the error code 
REGISTER_NOT_READABLE is returned. 

Remarks 
Not every register can be read. For a register description, refer to the specification of the corresponding 
Communication Controller. 



 

 

Created by STAR ELECTRONICS GmbH & Co. KG   

Date created 2021-10-05 Date modified  2021-10-05 Page 128 of 250 
 

3-
00

0
9-

0
S

01
-D

0
3_

A
P

I 
D

oc
um

en
ta

ti
on

_D
2

V
5

-F
.d

oc
x 

 

See Also 
fcCC, fcbFRSetCcRegister 

Example 
fcDword value = 0xFFFFFFFF; 
fcDword address = 0x0B8; 
fcCC eCC = fcCC1; 
 
if (0 != address % 4) return; //address not a multiple of 4 bytes! 
 
fcError e = fcbFRGetCcRegister(hFlexCard,eCC,address,&value); 
if (0 == e) 
{ 
 printf(“Register 0x%X=0x%X”, address, value); 
} 

5.3.6 fcbFRSetCcConfigurationChi 

This function configures the selected Communication Controller of the FlexCard with a FlexConfig 
compatible configuration string (CHI File). The configuration string contains the global FlexRay parameter 
and/or the message buffer configuration. The payload data for transmit message buffers is not set by this 
function. Before the configuration of the Communication Controller starts, all message buffers are reset to 
their default settings (FIFO buffer). 

fcError fcbFRSetCcConfigurationChi( 
fcHandle hFlexCard,  
fcCC CC, 
const char* szChi 

) 

Parameters 
hFlexCard 

[IN] Handle to a FlexCard. 
CC 

[IN] Communication controller index 
szChi 

[IN] Pointer to null-terminated CHI content string (refer to the CHI string example section). 
Please note: Do not use the CHI file name here, but the content of the CHI file as parameter value. 

Return values 
If the function succeeds, the return value is 0. If the value is <> 0, use the functions described in the section 
Error Handling to get extended error information. 
 

 

Information 

Internally, the function uses the fcbFRSetCcRegister function; therefore the same restrictions 
as for writing registers exist. 

 

See Also 
fcCC, fcbFRSetCcRegister 

Example 
See fcbFRSetCcConfigurationChi 

5.3.7 fcbFRSetCcConfiguration 

This function configures the FlexRay Communication Controller. 



 

 

Created by STAR ELECTRONICS GmbH & Co. KG   

Date created 2021-10-05 Date modified  2021-10-05 Page 129 of 250 
 

3-
00

0
9-

0
S

01
-D

0
3_

A
P

I 
D

oc
um

en
ta

ti
on

_D
2

V
5

-F
.d

oc
x 

 

fcError fcbFRSetCcConfiguration( 
 fcHandle hFlexCard, 
 fcCC CC, 
 fcFRCcConfig cfg 
) 

Parameters 
hFlexCard 

[IN] Handle to a FlexCard. 
CC 

[IN] Communication controller index. 
Cfg 

[IN] The FlexRay Communication Controller configuration. 

Return values 
If the function succeeds, the return value is 0. If the value is <> 0, use the functions described in the section 
Error Handling to get extended error information. 

See Also 
fcCC, fcFRCcConfig, fcbFRGetCcConfiguration 

Example 
fcCC eCC = fcCC1; 
fcFRCcConfig frCcConfigSet; 
memset(&frCcConfigSet, 0, sizeof(fcFRCcConfig)); 
 
// SUCC1 
frCcConfigSet.pKeySlotUsedForStartup = 0; 
frCcConfigSet.pKeySlotUsedForSync = 0; 
frCcConfigSet.gColdStartAttempts = 31; 
frCcConfigSet.pAllowPassiveToActive = 0; 
frCcConfigSet.pWakeupChannel = fcChannelA; 
frCcConfigSet.pSingleSlotEnabled = 0; 
frCcConfigSet.pAllowHaltDueToClock = 1; 
frCcConfigSet.pChannelsMTS = fcChannelNone; 
frCcConfigSet.pChannels = fcChannelBoth; 
 
// SUCC2 
frCcConfigSet.pdListenTimeout = 80242 ; 
frCcConfigSet.gListenNoise = 2 ; 
 
// SUCC3 
frCcConfigSet.gMaxWithoutClockCorrectionPassive = 2; 
frCcConfigSet.gMaxWithoutClockCorrectionFatal = 2; 
 
// NEMC 
frCcConfigSet.gNetworkManagementVectorLength = 0; 
 
// PRTC1 
frCcConfigSet.gdTSSTransmitter = 7; 
frCcConfigSet.gdCASRxLowMax = 99; 
frCcConfigSet.BaudRate = fcFRBaudRate10M; 
frCcConfigSet.gdWakeupSymbolRxWindow = 301; 
frCcConfigSet.pWakeupPattern = 2; 
 
// PRTC2 
frCcConfigSet.gdWakeupSymbolRxIdle = 59; 
frCcConfigSet.gdWakeupSymbolRxLow = 54; 
frCcConfigSet.gdWakeupSymbolTxIdle = 180; 
frCcConfigSet.gdWakeupSymbolTxLow = 60; 
 
// MHDC 
frCcConfigSet.gPayloadLengthStatic = 4; 
frCcConfigSet.pLatestTx = 0; 
 
// GTUC1 



 

 

Created by STAR ELECTRONICS GmbH & Co. KG   

Date created 2021-10-05 Date modified  2021-10-05 Page 130 of 250 
 

3-
00

0
9-

0
S

01
-D

0
3_

A
P

I 
D

oc
um

en
ta

ti
on

_D
2

V
5

-F
.d

oc
x 

 

frCcConfigSet.pMicroPerCycle = 40000; 
 
// GTUC2 
frCcConfigSet.gMacroPerCycle = 1000; 
frCcConfigSet.gSyncNodeMax = 2; 
 
// GTUC3 
frCcConfigSet.pMicroInitialOffsetA = 0; 
frCcConfigSet.pMicroInitialOffsetB = 0; 
frCcConfigSet.pMacroInitialOffsetA = 2; 
frCcConfigSet.pMacroInitialOffsetB = 2; 
 
// GTUC4 
frCcConfigSet.gdNIT = 40; 
frCcConfigSet.gOffsetCorrectionStart = 991; 
 
// GTUC5 
frCcConfigSet.pDelayCompensationA = 0; 
frCcConfigSet.pDelayCompensationB = 0; 
frCcConfigSet.pClusterDriftDamping = 1; 
frCcConfigSet.pDecodingCorrection = 40; 
 
// GTUC6 
frCcConfigSet.pdAcceptedStartupRange = 258; 
frCcConfigSet.pdMaxDrift = 121; 
 
// GTUC7 
frCcConfigSet.gdStaticSlot = 22; 
frCcConfigSet.gNumberOfStaticSlots = 43; 
 
// GTUC8 
frCcConfigSet.gdMinislot = 11; 
frCcConfigSet.gNumberOfMinislots = 0; 
 
// GTUC9 
frCcConfigSet.gdActionPointOffset = 1; 
frCcConfigSet.gdMinislotActionPointOffset = 5; 
frCcConfigSet.gdDynamicSlotIdlePhase = 2; 
 
// GTUC10 
frCcConfigSet.pOffsetCorrectionOut = 81; 
frCcConfigSet.pRateCorrectionOut = 121; 
 
// GTUC11 
frCcConfigSet.vExternOffsetControl = 0; 
frCcConfigSet.vExternRateControl = 0; 
frCcConfigSet.pExternOffsetCorrection = 0; 
frCcConfigSet.pExternRateCorrection = 0; 
 
// Configure the FlexRay CC 
e = fcbFRSetCcConfiguration(hFlexCard, eCC, frCcConfigSet); 
if (0 != e) {/* Error handling */}; 

5.3.8  fcbFRGetCcConfiguration 

This function reads the FlexRay Communication Controller configuration. 

fcError fcbFRGetCcConfiguration ( 
 fcHandle hFlexCard, 
 fcCC CC, 
 fcFRCcConfig* pCfg 
) 

Parameters 
hFlexCard 

[IN] Handle to a FlexCard. 



 

 

Created by STAR ELECTRONICS GmbH & Co. KG   

Date created 2021-10-05 Date modified  2021-10-05 Page 131 of 250 
 

3-
00

0
9-

0
S

01
-D

0
3_

A
P

I 
D

oc
um

en
ta

ti
on

_D
2

V
5

-F
.d

oc
x 

 

CC 
[IN] Communication controller index. 

pCfg 
[OUT] Pointer to the configuration parameters of the FlexRay Communication Controller. 

Return values 
If the function succeeds, the return value is 0. If the value is <> 0, use the functions described in the section 
Error Handling to get extended error information. 

See Also 
fcCC, fcFRCcConfig, fcbFRSetCcConfiguration 

Example 
fcCC eCC = fcCC1; 
fcFRCcConfig frCcConfigGet; 
 
e = fcbFRGetCcConfiguration(hFlexCard, eCC, &frCcConfigGet); 
if (0 != e) {/* Error handling */}; 

5.3.9 fcbFRSetMsgBufCfgMode 

This function configures the fcBase APIs message buffer configuration handling for the FlexRay 
Communication Controllers. The message buffer configuration mode can be changed while monitoring is 
active. 

fcError fcbFRSetMsgBufCfgMode( 
 fcHandle hFlexCard, 
 fcFRMsgBufCfgMode mode 
) 

Parameters 
hFlexCard 

[IN] Handle to a FlexCard. 
Mode 

[IN] The message buffer configuration mode. 

Return values 
If the function succeeds, the return value is 0. If the value is <> 0, use the functions described in the section 
Error Handling to get extended error information. 

See Also 
fcFRMsgBufCfgMode, fcMsgBufCfg, fcMsgBufCfgTx, fcMsgBufCfgRx 

 

 

Information 

This function is initially supported by FlexCard API version S6V1-F. 

 

5.3.10 fcbFRConfigureMessageBuffer 

This function configures transmit, receive and FIFO message buffers of the selected Communication 
Controller. Configuring message buffers is only allowed if the Communication Controller is in its 
configuration state, fcStateConfig. 



 

 

Created by STAR ELECTRONICS GmbH & Co. KG   

Date created 2021-10-05 Date modified  2021-10-05 Page 132 of 250 
 

3-
00

0
9-

0
S

01
-D

0
3_

A
P

I 
D

oc
um

en
ta

ti
on

_D
2

V
5

-F
.d

oc
x 

 

fcError fcbFRConfigureMessageBuffer( 
fcHandle hFlexCard, 
fcCC CC, 
fcDword* pBufferId, 
fcMsgBufCfg cfg 

); 
 

Parameters 
hFlexCard 

[IN] Handle to a FlexCard 
CC 

[IN] Communication controller index 
pBufferId 

[OUT] Message buffer identifier. If the configuration was successful, the message buffer identifier is 
greater than 0. This identifier will be required to transmit the content of the buffer (in the case of a 
transmit buffer). 

Cfg 
[IN] Message buffer configuration parameters 

Return values 
If the function succeeds, the return value is 0. If the value is <> 0, use the functions described in the section 
Error Handling to get extended error information. 

Remarks 
Before configuring the message buffers, it is necessary to set up the global communication parameters 
(cluster parameters). Internally the FlexCard uses the FIFO buffers as receive buffers, therefore we 
recommend using FIFO message buffers as much as possible.  

See Also 
fcCC, fcMsgBufCfg, fcMsgBufCfgTx, fcMsgBufCfgRx, fcMsgBufCfgFifo, 
fcbFRSetMsgBufCfgMode 

Example 
// The following code configures a transmit buffer, 
// which only transmits on cycles 6,14,22,30, … 
 
fcMsgBufCfg cfg; 
memset(&cfg, 0, sizeof(fcMsgBufCfg)); 
cfg.Type = fcMsgBufTx; 
cfg.ChannelFilter = fcChannelA; 
 
 
// Repetition: each 8 cycles 
// Offset: 6 (First cycle will be cycle number 6) 
 
cfg.CycleCounterFilter = 0x8 + 0x6; 
 
cfg.Tx.FrameId = 61; 
cfg.Tx.PayloadLength = 10; 
cfg.Tx.PayloadLengthMax = 127; 
cfg.Tx.PayloadPreambleIndicator = 0; 
cfg.Tx.SyncFrameIndicator = 0; 
cfg.Tx.StartupFrameIndicator = 0; 
cfg.Tx.TxAcknowledgeEnable= 0; 
cfg.Tx.TransmissionMode = fcMsgBufTxSingleShot; 
 
fcCC eCC = fcCC1; 
unsigned int bufferIdx = 0; 
fcError e = fcbFRConfigureMessageBuffer(hFlexCard,eCC,&bufferIdx,cfg); 



 

 

Created by STAR ELECTRONICS GmbH & Co. KG   

Date created 2021-10-05 Date modified  2021-10-05 Page 133 of 250 
 

3-
00

0
9-

0
S

01
-D

0
3_

A
P

I 
D

oc
um

en
ta

ti
on

_D
2

V
5

-F
.d

oc
x 

 

5.3.11 fcbFRReconfigureMessageBuffer 

This function reconfigures transmit, receive and FIFO message buffers of the selected Communication 
Controller. A reconfiguration is only allowed for message buffers which are already configured. This 
function is available in all states of the CC. Not all configuration settings can be modified in monitoring 
state. Refer to the documentation of the message buffer structures for further details. 

fcError fcbFRReconfigureMessageBuffer( 
fcHandle hFlexCard, 
fcCC CC, 
fcDword bufferId, 
fcMsgBufCfg cfg 

) 

Parameters 
hFlexCard 

[IN] Handle to a FlexCard 
CC 

[IN] Communication controller index 
bufferId 

[IN] The identifier of the message buffer which should be reconfigured. 
Cfg 

[IN] Message buffer configuration parameters. 

Return values 
If the function succeeds, the return value is 0. If the value is <> 0, use the functions described in the section 
Error Handling to get extended error information. 

See Also 
fcCC, fcMsgBufCfg, fcMsgBufCfgTx, fcMsgBufCfgRx, fcMsgBufCfgFifo, 
fcbFRConfigureMessageBuffer, fcbFRGetMessageBuffer, fcbFRSetMsgBufCfgMode 

5.3.12 fcbFRGetMessageBuffer 

This function reads a specific message buffer configuration.  

fcError fcbFRGetMessageBuffer( 
fcHandle hFlexCard, 
fcCC CC, 
fcDword bufferId, 
fcMsgBufCfg* pCfg 

) 

Parameters 
hFlexCard 

[IN] Handle to a FlexCard 
CC 

[IN] Communication controller index 
bufferId 

[IN] The identifier of the message buffer to be read 
pCfg 

[OUT] The configuration parameters of the specified message buffer. 

Return values 
If the function succeeds, the return value is 0. If the value is <> 0, use the functions described in the section 
Error Handling to get extended error information. 

See Also 
fcCC, fcMsgBufCfg, fcMsgBufCfgTx, fcMsgBufCfgRx, fcMsgBufCfgFifo, 
fcbFRConfigureMessageBuffer 



 

 

Created by STAR ELECTRONICS GmbH & Co. KG   

Date created 2021-10-05 Date modified  2021-10-05 Page 134 of 250 
 

3-
00

0
9-

0
S

01
-D

0
3_

A
P

I 
D

oc
um

en
ta

ti
on

_D
2

V
5

-F
.d

oc
x 

 

 

 

Information 

The buffer with id 1 is always a FIFO message buffer. 

 

Example 
// Get all configured transmit message buffers of Communication Controller 1 
fcCC eCC = fcCC1; 
std::map<unsigned int, fcMsgBufCfg> Buffers; 
unsigned int bufferIdx = 1; // The first valid buffer is 1 
while (true) 
{ 
 fcMsgBufCfg cfg; 
  
 // as long no error occurs we try to get each buffer 
 fcError e = fcbFRGetMessageBuffer(m_hFlexCard,eCC,bufferIdx,&cfg); 
 if (0 != e) break; 
   
 // is this a tx buffer, then add it to our list 
 if (fcMsgBufTx == cfg.Type) Buffers[bufferIdx] = cfg; 
  
 // next buffer index 
 bufferIdx++; 
} 

5.3.13 fcbFRResetMessageBuffers 

This function resets the Communication Controller message buffers. After calling this function, all message 
buffers are configured as receive FIFO – with maximal payload (depends on the Communication Controller). 

fcError fcbFRResetMessageBuffers( 
fcHandle hFlexCard, 
fcCC CC 

) 

Parameters 
hFlexCard 

[IN] Handle to a FlexCard 
CC 

[IN] Communication controller index 

Return values 
If the function succeeds, the return value is 0. If the value is <> 0, use the functions described in the section 
Error Handling to get extended error information. 

5.3.14 fcbFRSetSoftwareAcceptanceFilter 

This function configures the frame ids accepted by the device driver. Only the FlexRay ids which are in the 
filter list are forwarded to the user application, all other FlrexRay frames are rejected. One filter can be 
defined for both channels or two filters can be defined, one for Channel A and one for Channel B. See the 
configuration notice for further details. The filter behavior differs from the function 
fcbFRSetHardwareAcceptanceFilter. 



 

 

Created by STAR ELECTRONICS GmbH & Co. KG   

Date created 2021-10-05 Date modified  2021-10-05 Page 135 of 250 
 

3-
00

0
9-

0
S

01
-D

0
3_

A
P

I 
D

oc
um

en
ta

ti
on

_D
2

V
5

-F
.d

oc
x 

 

fcError fcbFRSetSoftwareAcceptanceFilter( 
fcHandle hFlexCard, 
fcCC CC, 
fcChannel channel, 
fcDword* pData, 
fcDword size 

) 

Parameters 
hFlexCard 

[IN] Handle to a FlexCard 
CC 

[IN] Communication controller index 
channel 

[IN] FlexCard channel(s) concerned by the filter 
pData 

[IN] Pointer to an fcDword array containing the ids accepted by the device driver. Each element 
(fcDword) contains one frame identifier. 

fcDword fcDword fcDword fcDword 
ID x ID y ID z … 

size 
[IN] Number of ids in the array. 

Return values 
If the function succeeds, the return value is 0. If the value is <> 0, use the functions described in the section 
Error Handling to get extended error information. 

Configuration notice 
channel pData size Behaviour 

 NULL 0 Accept all IDs. 
fcChannelBoth ID 0  Accept all IDs. 
fcChannelNone ID x  Does nothing. 
fcChannelA ID 5  Accepts only ID 5 on Channel A, but 

allows all frames on Channel B (including 
ID 5) if there wasn’t another filter for 
Channel B defined. 

fcChannelA, 
fcChannelB 

ID 5 
ID 3 

 Accepts only ID 5 Channel A and ID 3 
Channel B, rejects all other frames. 

Example 
// Configure the filter to get only  
// - the frames from frame id 15 and 60 on CC 1, channel A 
// - and the frame ids 1,2,3,6 on CC 1, channel B 
 
fcDword idsChA[2] = {15,60}; 
fcDword idsChB[4] = {1,2,3,6}; 
fcCC eCC = fcCC1; 
 
fcError e = fcbFRSetSoftwareAcceptanceFilter(hFlexCard,eCC,fcChannelA,idsChA,2); 
//… 
e = fcbFRSetSoftwareAcceptanceFilter(hFlexCard,eCC,fcChannelB,idsChB,4); 

5.3.15 fcbFRSetHardwareAcceptanceFilter 

This function configures the FlexRay frame ids accepted by the FlexCard firmware. Only the FlexRay ids 
which are in the filter list are forwarded to the device driver, all other FlexRay frames are rejected. See the 
configuration notice for further details. The filter behavior differs from the function 
fcbFRSetSoftwareAcceptanceFilter. When using this function, receiving frames is faster than using 
fcbFRSetSoftwareAcceptanceFilter. 



 

 

Created by STAR ELECTRONICS GmbH & Co. KG   

Date created 2021-10-05 Date modified  2021-10-05 Page 136 of 250 
 

3-
00

0
9-

0
S

01
-D

0
3_

A
P

I 
D

oc
um

en
ta

ti
on

_D
2

V
5

-F
.d

oc
x 

 

fcError fcbFRSetHardwareAcceptanceFilter( 
fcHandle hFlexCard, 
fcCC CC, 
fcChannel channel, 
fcDword* pData, 
fcDword size, 
fcBool reset 

) 

Parameters 
hFlexCard 

[IN] Handle to a FlexCard. 
CC 

[IN] Communication controller index. 
Channel 

[IN] FlexCard channel(s) concerned by the filter. 
pData 

[IN] Pointer to an fcDword array containing the ids accepted by the device driver. Each element 
(fcDword) contains one frame identifier. 

fcDword fcDword fcDword fcDword 
ID x ID y ID z … 

size 
[IN] Number of ids in the array. 

Reset 
[IN] Set to <> 0 to reset the filter, before configuring a new filter. The hardware transmit filter and 
hardware acceptance filter of both channels are resetted, while the software acceptance filter is not 
touched. Set reset to 0 to add the frame identifier to the existing filter. 

Configuration notice 
channel pData size Behaviour 

 NULL 0 Accept all IDs. 
fcChannelBoth ID 0  Accept all IDs. 
fcChannelNone ID 0  Reject all IDs. 
fcChannelNone ID x  Reject ID x. 
fcChannelA ID 5  Accepts only ID 5 Channel A, rejects all 

other frames. 
fcChannelA, 
fcChannelB 

ID 5 
ID 3 

 Accepts only ID 5 Channel A and ID 3 
Channel B, rejects all other frames. 

Return values 
If the function succeeds, the return value is 0. If the value is <> 0, use the functions described in the section 
Error Handling to get extended error information. 

See Also 
fcCC, fcChannel, fcbReceive 

 

5.3.15.1 fcEthernetErrorType 
This enumeration contains the different error types reported by an ethernet error packet. 

Typedef enum fcEthernetErrorType 
{ 
 fcEthernetErrorNone = 0, 
 fcEthernetErrorFrameCheckSequence,  
}fcEthernetErrorType; 

Members 
fcEthernetErrorNone 

No error occurred. 



 

 

Created by STAR ELECTRONICS GmbH & Co. KG   

Date created 2021-10-05 Date modified  2021-10-05 Page 137 of 250 
 

3-
00

0
9-

0
S

01
-D

0
3_

A
P

I 
D

oc
um

en
ta

ti
on

_D
2

V
5

-F
.d

oc
x 

 

fcEthernetErrorFrameCheckSequence 
A frame check sequence error was detected. 

See Also 
fcEthernetErrorPacket 

 

Information 

This enumeration is initially supported by FlexCard API version S6V7-F. 

 
 

fcbReceive 

5.3.16 fcbFRSetHardwareTransmitFilter 

This function configures the FlexRay frame ids transmitted by the FlexCard firmware. Only the FlexRay ids 
which are in the transmission filter configuration list are enabled or disabled for transmission. See the 
configuration notice for further details. 

fcError fcbFRSetHardwareTransmitFilter( 
fcHandle hFlexCard, 
fcCC CC, 
fcChannel channel, 
fcDword* pData, 
fcDword size, 
fcBool reject, 
fcBool reset 

) 

Parameters 
hFlexCard 

[IN] Handle to a FlexCard. 
CC 

[IN] Communication controller index. 
Channel 

[IN] FlexCard channel(s) concerned by the transmission filter. 
pData 

[IN] Pointer to an fcDword array containing the ids which will be configured (en-/disabled). Each 
element (fcDword) contains one frame identifier. 

fcDword fcDword fcDword fcDword 
ID x ID y ID z … 

size 
[IN] Number of ids in the array. 

Reject 
[IN] Set this value to <> 0 to disable the transmission of the ids in the array. Set the value to 0 to 
enable the transmission. 

Reset 
[IN] Set this value to <> 0 to reset the transmission filter, before configuring a new filter. The 
hardware transmit filter and hardware acceptance filter of both channels are resetted, while the 
software acceptance filter is not touched. If reset is set to 0 the frame identifier is added to the 
existing transmission filter configuration. 

Configuration notice 
channel pData size behaviour 

 NULL 0 Accept all IDs. 
fcChannelBoth ID 0  Transmit or reject transmission of all IDs 

(depends on reject member). 



 

 

Created by STAR ELECTRONICS GmbH & Co. KG   

Date created 2021-10-05 Date modified  2021-10-05 Page 138 of 250 
 

3-
00

0
9-

0
S

01
-D

0
3_

A
P

I 
D

oc
um

en
ta

ti
on

_D
2

V
5

-F
.d

oc
x 

 

Return values 
If the function succeeds, the return value is 0. If the value is <> 0, use the functions described in the section 
Error Handling to get extended error information. 

See Also 
fcCC, fcChannel, fcbFRTransmit 

 

 

Information 

This function is initially supported by FlexCard API version S6V1-F. 

 

5.3.17 fcbFRSetCcTimerConfig 

This function configures the Communication Controller timer interrupt. To get a notification when the 
Communication Controller timer interval elapsed, an event of type fcNotificationTypeFRCcTimer 
has to be registered by the function fcbSetEventHandleV2. Additionally, the Communication Controller 
timer can be enabled / disabled by this function. 

fcError fcbFRSetCcTimerConfig( 
fcHandle hFlexCard, 
fcCC CC, 
fcCcTimerCfg cfg, 
fcBool bEnable 

) 

Parameters 
hFlexCard 

[IN] Handle to a FlexCard. 
CC 

[IN] Communication controller index 
Cfg 

[IN] The Communication Controller timer configuration. 
bEnable 

[IN] Set to <> 0 to enable the CC timer, and to 0 to disable it. 

Return values 
If the function succeeds, the return value is 0. If the value is <> 0, use the functions described in the section 
Error Handling to get extended error information. 

See Also 
fcCC, fcbSetEventHandleV2, fcbSetEventHandleSemaphore, fcCcTimerCfg, 
fcbFRGetCcTimerConfig 

Example 
See Example fcbFRCalculateMacrotickOffset 

5.3.18 fcbFRGetCcTimerConfig 

This function reads the Communication Controller timer configuration. 



 

 

Created by STAR ELECTRONICS GmbH & Co. KG   

Date created 2021-10-05 Date modified  2021-10-05 Page 139 of 250 
 

3-
00

0
9-

0
S

01
-D

0
3_

A
P

I 
D

oc
um

en
ta

ti
on

_D
2

V
5

-F
.d

oc
x 

 

fcError fcbFRGetCcTimerConfig( 
fcHandle hFlexCard, 
fcCC CC, 
fcCcTimerCfg* pCfg 

) 

Parameters 
hFlexCard 

[IN] Handle to a FlexCard. 
CC 

[IN] Communication controller index 
pCfg 

[OUT] The configuration parameters of the CC timer. 

Return values 
If the function succeeds, the return value is 0. If the value is <> 0, use the functions described in the section 
Error Handling to get extended error information. 

See Also 
fcCC, fcCcTimerCfg, fcbFRSetCcTimerConfig 

Example 
See Example fcbFRCalculateMacrotickOffset 

5.3.19 fcbFRCalculateMacrotickOffset 

This function calculates the macrotick offset for a specific cycle position in a FlexRay cycle. The function 
requires that the FlexRay CC was configured with the function fcbFRSetCcConfiguration or 
fcbFRSetCcConfigurationChi. 

fcError fcbFRCalculateMacrotickOffset( 
fcHandle hFlexCard, 
fcCC CC, 
fcCyclePos CyclePosition, 
fcDword SlotOrMiniSlotId, 
fcDword* pValue 

) 

Parameters 
hFlexCard 

[IN] Handle to a FlexCard. 
CC 

[IN] Communication controller index 
CyclePosition 

[IN] The cycle position of type fcCyclePos. 
SlotOrMiniSlotId 

[IN] This parameter is used for a cycle position of fcCyclePosStaticSlot and 
fcCyclePosDynamicMiniSlot to calculate the macrotick offset for a static slot or a dynamic 
mini slot id. 

pValue 
[OUT] The macrotick offset value. 

Return values 
If the function succeeds, the return value is 0. If the value is <> 0, use the functions described in the section 
Error Handling to get extended error information. 

See Also 
fcCC, fcCyclePos, fcCcTimerCfg, fcbFRSetCcTimerConfig, fcbFRGetCcTimerConfig 



 

 

Created by STAR ELECTRONICS GmbH & Co. KG   

Date created 2021-10-05 Date modified  2021-10-05 Page 140 of 250 
 

3-
00

0
9-

0
S

01
-D

0
3_

A
P

I 
D

oc
um

en
ta

ti
on

_D
2

V
5

-F
.d

oc
x 

 

Example 
// 
// Configure the CC 1 timer to get notified of the static slot id 9 start, 
// Check the configuration and start the CC 1 timer  
// 
fcCC eCC = fcCC1 ; 
fcCcTimerCfg ccTimerConfigSet, ccTimerConfigGet ; 
memset(&ccTimerConfigSet, 0, sizeof(fcCcTimerCfg)) ; 
memset(&ccTimerConfigGet, 0, sizeof(fcCcTimerCfg)) ; 
 
ccTimerConfigSet.CycleCounterFilter = 1 ; 
ccTimerConfigSet.ContinuousMode = 1 ; 
ccTimerConfigSet.MacrotickOffset = 0 ; 
 
// Calculate the macrotick offset for static slot id 9 
fcDword dwMTOffset = 0; 
fcDword dwSlotId = 9; 
fcError e = fcbFRCalculateMacrotickOffset(hFlexCard, eCC, 
 fcCyclePosStaticSlot, dwSlotId, &dwMTOffset); 
if (0 != e) {/* Error handling */}; 
else ccTimerConfigSet.MacrotickOffset = dwMTOffset; 
 
// Configure the CC 1 timer, but don’t start 
e = fcbFRSetCcTimerConfig(hFlexCard, eCC, ccTimerConfigSet, false) ; 
if (0 != e) {/* Error handling */}; 
 
// Read the configuration 
e = fcbFRGetCcTimerConfig(hFlexCard, eCC, &ccTimerConfigGet) ; 
if (0 != e) {/* Error handling */}; 
 
// Check the configured timer 
if (ccTimerConfigSet.CycleCounterFilter != ccTimerConfigGet.CycleCounterFilter 
 || ccTimerConfigSet.ContinuousMode != ccTimerConfigGet.ContinuousMode 
 || ccTimerConfigSet.MacrotickOffset != ccTimerConfigGet.MacrotickOffset) 
 {return;} 
 
// We passed the check, now start the CC timer with this config 
e = fcbFRSetCcTimerConfig(hFlexCard, eCC, ccTimerConfigSet, true); 
if (0 != e) {/* Error handling */}; 
 
// Wait for the CC 1 timer event ... 

5.4 Transmit 

5.4.1 Enumerations 

5.4.1.1 fcSymbolType 
This enumeration defines the supported communication symbols when the Communication Controller is in 
POC state NORMAL_ACTIVE. For more details about these symbols, please refer to the FlexRay Protocol 
Specification. To send a wake-up symbol (WUS) or collision avoidance symbol (CAS), refer to the function 
fcbFRMonitoringStart. 

Typedef enum fcSymbolType 
{ 
 fcMediaAccessTestSymbolType = 1, 
} fcSymbolType; 

Members 
fcMediaAccessTestSymbolType 

Media Access Test Symbol (MTS) 



 

 

Created by STAR ELECTRONICS GmbH & Co. KG   

Date created 2021-10-05 Date modified  2021-10-05 Page 141 of 250 
 

3-
00

0
9-

0
S

01
-D

0
3_

A
P

I 
D

oc
um

en
ta

ti
on

_D
2

V
5

-F
.d

oc
x 

 

See Also 
fcbFRTransmitSymbol 

5.4.2 fcbFRTransmit 

This function writes a data frame into a Communication Controller transmit buffer of the FlexCard. The 
function returns immediately and does not wait for the data frame to arrive on the bus. The frame should 
normally be transmitted in the next cycle. In the static segment of the FlexRay cycle, frames are 
transmitted in the order of the time slot. Example: If the CC is in the current slot 15 and the user transmits 
the static frame ID 1 and shortly after that ID 30, the CC will transmit ID 30 before ID 1. If the transmit 
acknowledgment is activated, an acknowledge packet is generated as soon as the frame has been 
transmitted. This function should only be called when the FlexCard is in normal active state or when all 
message buffer configurations have been done. When the user transmits several times new data with the 
same buffer ID in a very short time periode, it may happen that data is overwritten that was not transmitted 
yet. If you experience that behavior, wait for the TxAck for the data you wanted to send. 

fcError fcbFRTransmit( 
fcHandle hFlexCard, 
fcCC CC, 
fcDword bufferId, 
fcWord * pPayload, 
fcByte payloadLength 

); 

Parameters 
hFlexCard 

[IN] Handle to a FlexCard 
CC 

[IN] Communication controller index 
bufferId 

[IN] The id of the message buffer used for the transmission 
pPayload 

The payload data to be transmitted 
payloadLength 

The size of the payload data (number of 2-byte words) 

Return values 
If the function succeeds, the return value is 0. If the value is <> 0, use the functions described in the section 
Error Handling to get extended error information. 

Remarks  
The payload data has to be organized as follows: if Data0 is the first byte to transmit and Data1 the second 
byte to transmit, then the high byte (Bit 8 – 15) of payload[0] contains Data1, the low byte (Bit 0-7) of 
payload[0] contains Data0, etc. 

Parameter payload payload[0] (Word 0) payload[1] (Word 1) … 
High byte Low byte High byte Low byte … 

FlexRay payload segment Data 1 Data 0 Data 3 Data 2 … 



 

 

Created by STAR ELECTRONICS GmbH & Co. KG   

Date created 2021-10-05 Date modified  2021-10-05 Page 142 of 250 
 

3-
00

0
9-

0
S

01
-D

0
3_

A
P

I 
D

oc
um

en
ta

ti
on

_D
2

V
5

-F
.d

oc
x 

 

Example 
fcCC eCC = fcCC1; 
fcWord payload[fcPayloadMaximum]; 
payload[0] = 0x0001; // Update your payload data 
 
fcError e = fcbFRTransmit(m_hFlexCard,eCC,bufferIdx,payload,payloadLength); 

5.4.3 fcbFRTransmitSymbol 

This function transmits a symbol in the symbol window segment. It can only be called if the selected Communication 
Controller is in the POC state NORMAL_ACTIVE. For a list of available symbols to be transmitted, see the 
enumeration fcSymbolType. 

fcError fcbFRTransmitSymbol( 
fcHandle hFlexCard, 
fcCC CC, 
fcSymbolType type 

); 

Parameters 
hFlexCard 

[IN] Handle to a FlexCard 
CC 

[IN] Communication controller index 
type 

[IN] Type of symbol to transmit 

Return values 
If the function succeeds, the return value is 0. If the value is <> 0, use the functions described in the section 
Error Handling to get extended error information. 
 



 

 

Created by STAR ELECTRONICS GmbH & Co. KG   

Date created 2021-10-05 Date modified  2021-10-05 Page 143 of 250 
 

3-
00

0
9-

0
S

01
-D

0
3_

A
P

I 
D

oc
um

en
ta

ti
on

_D
2

V
5

-F
.d

oc
x 

 

6 CAN API 

The following section describes the data structures and features used for CAN functionality. To use these 
functions the FlexCard must have a firmware with a CAN CC and the FlexCard must be licensed for CAN. 

 

Information 

All enumerations, structures and function in this chapter are initially supported by FlexCard 
Windows API version S4V0-F and FlexCard Linux/Xenomai API version S4V2-F. 

 

6.1 Basic CAN Workflow 

The following figure shows a typical CAN workflow. 

The CAN functions are supported for the CAN Communication Controller type Bosch D_CAN. The Enum 
function returns the struct fcInfoHwSw. Check the struct fcInfoHw.pVersionCC to see whether the firmware 
provides this CC type. 

The CCs are counted in following order: First FlexRay, then CAN. CAN-FD CCs count like CAN CCs. 

For example, if the firmware image has 2 FlexRay CC and 4 CAN CCs, the CCs are referred to like this: 

• FlexRay fcCC1, fcCC2 

• CAN fcCC1, fcCC2, fcCC3, fcCC4 

Please note that the message buffers may be reconfiguered during monitoring, but the CAN configuration 
may only be changed when monitoring is not active. 

The API for CAN-HS and CAN-LS buses is the same. CAN-HS baud rate is 40 Kbit/s to 1 Mbit/s. CAN-LS 
baud rate is 5 Kbit/s to 125 Kbit/s. The FlexCard installer includes the application 
“CANBaudRateCalculator” which calculates the bus parameters for a selected baud rate. Refer to the 
chapter General Function Availability to find out if the connected FlexCard device supports onboard CAN 
terminations. For CAN-LS the bus termination is integrated on the PCB. 

There are several ways to transmit CAN data. Using message buffers either with the function 
fcbCANTransmit or with fcbCANSetMessageBuffer with enableTxRequest = true. The parameter 
ignoreTxRqstLock should be set to false, so that you notice when data was lost during transmitting or 
reconfiguring. 

Check for the error code that is returned from fcbCANTransmit and fcbCANSetMessageBuffer. If it is 
MSG_BUF_LOCKED_FOR_TRANSMISSION, try again. This error appears permanently when the 
configuration is not right, so set a limit to the number of retries. 

When you want to transmit data from the start, call fcbCANSetMessageBuffer with 
enableTxRequest = false and newData = true. After having called fcbCANMonitoringStart, use 
the function fcbCANTransmit with transmitNewData = false. Using the function 
fcbCANSetMessageBuffer with enableTxRequest = true is not recommended before the start-up, 
because the data is transmitted immediately after starting the CC. When you use two CAN CCs on the 
FlexCard, the second CC may not be started up and misses the ID you tried to send. 

When you want to send new data during monitoring, use fcbCANSetMessageBuffer with 
enableTxRequest = true and newData = true. 

With FlexCard API version S6V3-F and FlexCard firmware version S6V3-F on, it is possible to transmit CAN 
data messages very easily. FlexCard version S6V3-F introduces a CAN transmit FIFO for every CAN 
Communication Controller. There are two new configurations (fcbCANSetTxFifoConfiguration, 
fcbCANTxFifoReset) and one new transmit function available (fcbCANTxFifoTransmit). With these 
functions CAN data messages can be configured and transmitted without reconfiguration of the 
corresponding message buffer objects. A configurable hardware timer helps to transmit CAN data 
messages to a deliberate time slot, i.d. real-time behavior with non real-time capable operating systems are 
possible. 

The FlexCard Windows Developer Setup installs the example application fcDemoCAN.exe and its source 
code to the installation directory. 



 

 

Created by STAR ELECTRONICS GmbH & Co. KG   

Date created 2021-10-05 Date modified  2021-10-05 Page 144 of 250 
 

3-
00

0
9-

0
S

01
-D

0
3_

A
P

I 
D

oc
um

en
ta

ti
on

_D
2

V
5

-F
.d

oc
x 

 

 

Figure 11: Typical CAN function workflow 



 

 

Created by STAR ELECTRONICS GmbH & Co. KG   

Date created 2021-10-05 Date modified  2021-10-05 Page 145 of 250 
 

3-
00

0
9-

0
S

01
-D

0
3_

A
P

I 
D

oc
um

en
ta

ti
on

_D
2

V
5

-F
.d

oc
x 

 

6.2 Initialization 

6.2.1 Enumerations 

6.2.1.1 fcCANCcState 
This enumeration defines the CAN Communication Controller states. For more details about CAN 
Communication Controller states, please refer to [6]/[7] (CAN Protocol Specification). 

Typedef enum fcCANCcState 
{ 
 fcCANCcStateUnknown = 0, 
 fcCANCcStateConfig, 
 fcCANCcStateNormalActive, 
 fcCANCcStateWarning, 
 fcCANCcStateErrorPassive, 
 fcCANCcStateBusOff, 
}fcCANCcState; 

Members 
fcCANCcStateUnknown 

Communication controller state is unknown. 
fcCANCcStateConfig 

Communication controller is in configuration state. 
fcCANCcStateNormalActive 

Communication controller is in normal active state. 
fcCANCcStateWarning 

Communication controller is in error warning state. At least one of the error counters has reached 
the error warning limit of 96. 

fcCANCcStateErrorPassive 
Communication controller is in error passive state. No CAN messages can be sent anymore except 
CAN passive errors. 

fcCANCcStateBusOff 
Communication controller is in bus off state. No CAN messages can be sent anymore. 

See Also 
fcbCANGetCcState, fcbCANMonitoringStart 

6.2.1.2 fcCANMonitoringMode 
This enumeration defines the different modes available, used to monitor a CAN cluster. 

Typedef enum fcCANMonitoringMode 
{ 
 fcCANMonitoringNormal = 0, 
 fcCANMonitoringActive = fcCANMonitoringNormal, 
 fcCANMonitoringSilent = 1, 
 fcCANMonitoringPassive = fcCANMonitoringSilent, 
}fcCANMonitoringMode; 

Members 
fcCANMonitoringNormal 
fcCANMonitoringActive 

The FlexCard will switch from configuration to normal active state as soon as possible. In normal 
active state CAN frames can be received and transmitted. 

fcCANMonitoringSilent 
fcCANMonitoringPassive 

The FlexCard will switch from configuration to normal passive state as soon as possible. In normal 
passive state CAN frames can be received only. 



 

 

Created by STAR ELECTRONICS GmbH & Co. KG   

Date created 2021-10-05 Date modified  2021-10-05 Page 146 of 250 
 

3-
00

0
9-

0
S

01
-D

0
3_

A
P

I 
D

oc
um

en
ta

ti
on

_D
2

V
5

-F
.d

oc
x 

 

See Also 
fcbCANMonitoringStart 

6.2.2 fcbCANMonitoringStart 

This function is used to start the monitoring of a CAN bus. Once called, the function changes the Communication 
Controller state from configuration state to fcCANCcStateNormalActive if the start-up is successful. This 
state is entered if either mode fcCANMonitoringNormal or fcCANMonitoringSilent is used. The 
current Communication Controller state can be read using the function fcbCANGetCcState. The user should call 
fcbCANGetCcState after fcbCANMonitoringStart and check that the CC is in the state 
fcCANCcStateNormalActive. 

fcError fcbCANMonitoringStart( 
 fcHandle hFlexCard, 
 fcCC CC, 
 fcBool resetTimestamps, 
 fcCANMonitoringMode mode 
); 

Parameters 
hFlexCard 

[IN] Handle to a FlexCard. 
CC 

[IN] Index of the CAN Communication Controller. 
restartTimestamps 

[IN] Set this parameter to 0 to restart the measurement without resetting the FlexCard timestamp. 
Set it to <> 0 to start the measurement from the beginning. The timestamps have microsecond 
resolution. 

Mode 
[IN] The monitoring mode. See fcCANMonitoringMode for details which monitoring mode is 
supported. 

Return values 
If the function succeeds, the return value is 0. If the value is <> 0, use the functions described in the section 
Error Handling to get extended error information. 

Remarks 
After the monitoring has started, the user should check if the integration in the cluster was successful, 
fcbCANGetCcState should return the state fcCANCcStateNormalActive. 
 

 

Information 

After the monitoring has successfully started, the receive process must be started as soon as 
possible to avoid an overflow (error packet fcErrFlexcardOverflow is received). Once an 
overflow occurred, no more packets can be received. The monitoring must be stopped and started 
again. 

 

 

Information 

On a FlexCard PXIe3/PCIe3 using the FlexDevice Mode, the driver checks how the FlexConfig RBS 
running on the processor is configured. The CAN decoder supports the frame format 
fcCANFDFormatIso11898_1, but not the frame format 
fcCANFDFormatBoschSpecV1_0. If the FlexConfig RBS is configured to a not supported 
CAN-FD frame format, this function returns FUNCTION_NOT_IMPLEMENTED. 

 

See Also 
fcbCANMonitoringStop, fcbCANGetCcState, fcCANMonitoringMode 



 

 

Created by STAR ELECTRONICS GmbH & Co. KG   

Date created 2021-10-05 Date modified  2021-10-05 Page 147 of 250 
 

3-
00

0
9-

0
S

01
-D

0
3_

A
P

I 
D

oc
um

en
ta

ti
on

_D
2

V
5

-F
.d

oc
x 

 

Example 
// Precondition: valid flexcard handle exists and the flexcard is  
// already configured. 
 
fcCC eCC = fcCC1; 
fcError e = fcbCANMonitoringStart(hFlexCard,eCC,true,fcCANMonitoringNormal); 
if (0 == e)  
{ 
 bool active = false; 
  bool timeout = false; 
  DWORD maxTime = ::GetTickCount() + 2000; 
  fcCANCcState state = fcCANCcStateUnknown; 
 
  // Check if the FlexCard is in CAN normal active state 
  do 
  { 
   fcbCANGetCcState(hFlexCard, eCC, &state); 
   active = (state == fcCANCcStateNormalActive); 
   timeout  = ::GetTickCount() >= maxTime; 
 
  } while ( ! active && ! timeout); 
   
  if (active) 
  { 
   // Start your receive thread/routine 
   //   ... 
  } 
  else 
  { 
   // if we timed out, we stop the monitoring 
   fcbCANMonitoringStop(hFlexCard); 
  } 
}  
else 
{ 
  // error handling … 
} 

6.2.3 fcbCANMonitoringStop 

This function stops the CAN bus monitoring of the selected Communication Controller. The Communication 
Controller is set back in its configuration state. After calling this function and emptying the receive buffer 
with fcbReceive, no more messages from this Communication Controller are received. Additionally, if the 
user transmits messages after calling this function, they do not appear on the CAN bus. 

fcError fcbCANMonitoringStop( 
 fcHandle hFlexCard, 
 fcCC CC 
) 

Parameters 
hFlexCard 

[IN] Handle to FlexCard. 
CC 

[IN] Index of the CAN Communication Controller. 

Return values 
If the function succeeds, the return value is 0. If the value is <> 0, use the functions described in the section 
Error Handling to get extended error information. 

See Also 
fcbCANMonitoringStart 



 

 

Created by STAR ELECTRONICS GmbH & Co. KG   

Date created 2021-10-05 Date modified  2021-10-05 Page 148 of 250 
 

3-
00

0
9-

0
S

01
-D

0
3_

A
P

I 
D

oc
um

en
ta

ti
on

_D
2

V
5

-F
.d

oc
x 

 

6.2.4 fcbCANGetCcState 

This function returns the current CAN Communication Controller state. For a description of possible states, 
refer to the enumeration fcCANCcState. 

fcError fcbCANGetCcState( 
fcHandle hFlexCard, 
fcCC CC, 
fcCANCcState* pState 

) 

Parameters 
hFlexCard 

[IN] Handle to a FlexCard. 
CC 

[IN] Communication Controller index. 
pState 

[OUT] Current CAN Communication Controller state. 

Return values 
If the function succeeds, the return value is 0. If the value is <> 0, use the functions described in the section 
Error Handling to get extended error information. 

See 
fcbCANMonitoringStart, fcbCANMonitoringStop, fcCANCcState 

Example 
For an example, see fcbCANMonitoringStart. 

6.3 Configuration 

6.3.1 Enumerations 

6.3.1.1 fcCANBufCfgType 

For the transmission and reception of CAN frames the Communication Controller provides different types 
of message buffers. There are 128 message buffers available. These buffers can be freely configured as rx 
or tx buffers. For sending and receiving error frames or for receiving trigger packets, no message buffer is 
needed. Each message buffer can be assigned with one of the following specific types. 

Typedef enum fcCANBufCfgType 
{ 
 fcCANBufCfgTypeNone = 0, 
 fcCANBufCfgTypeCommon, 
 fcCANBufCfgTypeRxAll, 
 fcCANBufCfgTypeRx, 
 fcCANBufCfgTypeTx, 
 fcCANBufCfgTypeRemoteRx, 
 fcCANBufCfgTypeRemoteTx, 
}fcCANBufCfgType; 

Members 
fcCANBufCfgTypeNone 

The message buffer is not used. It can be used to reset a message buffer. 
fcCANBufCfgTypeCommon 

The message buffer is reserved for internal use only. (No support.) 
fcCANBufCfgTypeRxAll 

The message buffer is used for receiving all incoming CAN data and remote frames. 
fcCANBufCfgTypeRx 

The message buffer is used as a receive buffer for either a specific message or a set of messages. 



 

 

Created by STAR ELECTRONICS GmbH & Co. KG   

Date created 2021-10-05 Date modified  2021-10-05 Page 149 of 250 
 

3-
00

0
9-

0
S

01
-D

0
3_

A
P

I 
D

oc
um

en
ta

ti
on

_D
2

V
5

-F
.d

oc
x 

 

fcCANBufCfgTypeTx 
The message buffer is used as a transmit buffer for a specific CAN message ID. 

fcCANBufCfgTypeRemoteRx 
The message buffer is used as a remote receive buffer. It is used for sending a remote request and 
receiving the according replying message. 

fcCANBufCfgTypeRemoteTx 
The message buffer is used as a remote transmission buffer. It can be transmitted automatically 
when a remote request is received. 

See Also 
fcCANBufCfg 

6.3.1.2 fcCANBufCfgRxAllCondition 
This enumeration defines the acceptance conditions of an fcCANBufCfgRxAll buffer. The conditions may 
be binary Ored. 

Typedef enum fcCANBufCfgRxAllCondition 
{ 
 fcCANRxAllNone  = 0x0, 
 fcCANRxAllIDStandard = 0x1, 
 fcCANRxAllIDExtended = 0x2, 
 fcCANRxAllFrameData = 0x4, 
 fcCANRxAllFrameRemote = 0x8, 
}fcCANBufCfgRxAllCondition; 

Members 
fcCANRxAllNone 

Accept no frames. 
fcCANRxAllIDStandard 

Accept CAN frames with standard identifiers. 
fcCANRxAllIDExtended 

Accept CAN frames with extended identifiers. 
fcCANRxAllFrameData 

Accept all CAN data frames. 
fcCANRxAllFrameRemote 

Accept all CAN remote frames. 

See Also 
fcCANBufCfgRxAll 

6.3.2 Structures 

6.3.2.1 fcCANBufCfgRxAll 
This structure specifies a special CAN receive message buffer. This buffer type is used to receive all frames 
of the specified conditions. 

Typedef struct fcCANBufCfgRxAll 
{ 
 fcDword Condition; 
 fcDword Reserved[2]; 
}fcCANBufCfgRxAll; 

Members 
Condition 

The acceptance condition for this buffer, which can be OR-ed. 
At least one id condition and one frame condition must be used to receive frames. 

Reserved 
Reserved for future use. 



 

 

Created by STAR ELECTRONICS GmbH & Co. KG   

Date created 2021-10-05 Date modified  2021-10-05 Page 150 of 250 
 

3-
00

0
9-

0
S

01
-D

0
3_

A
P

I 
D

oc
um

en
ta

ti
on

_D
2

V
5

-F
.d

oc
x 

 

See Also 
fcCANBufCfg, fcCANBufCfgRxAllCondition 

6.3.2.2 fcCANBufCfgRx 
This structure specifies the configuration of a CAN receive message buffer. This buffer type is used to 
receive a CAN message with a specific CAN ID only or a range of CAN IDs. 

Typedef struct fcCANBufCfgRx 
{ 
 fcDword ID; 
 fcDword MaskID; 
 fcDword enableIDExtended :1; 
 fcDword enableMask  :1; 
 fcDword Reserved[2]; 
}fcCANBufCfgRx; 

Members 
ID 

Defines the CAN identifier to be received in this message buffer. 
Valid values for a standard CAN ID range from 0x0 – 0x7FF. 
Valid values for an extended CAN ID range from 0x0 – 0x1FFFFFFF. 

MaskID 
The bit mask. The corresponding bits from the struct member ID are used for acceptance filtering. 
MaskID configures which bits will be checked during filtering. 1 means that the bit position of the ID 
will be checked, while 0 means that the bit position of the ID is not used for acceptance filtering. ID 
configures which value the bit position must contain so that the frame is received. 
If MaskID is equal 0, all IDs will be accepted. 

enableIDExtended 
If set to 1 the message buffer is defined for extended CAN identifiers only. If set to 0 the message 
buffer is defined for standard CAN identifiers. It’s not possible to receive both versions in one 
message buffer. 

enableMask 
Set this flag to 1 to enable the acceptance mask. 

Reserved 
Reserved for future use. 

Configuration notice 
Example: IDs 11 and 13 should be received. 

ID 11 is in binary code:  1011 

ID 13 is in binary code:  1101 

Set the MaskID to 1001 (0x9) and the ID to one of the IDs that should be received, e.g. 13 (0xD). The filter 
is not perfect, that means that IDs 9 and 15 are received, too. 

Further examples: 

ID MaskID enableMask Behaviour 
0x1 0x1 1 Only odd frames are received (1, 3, 5, …) 
0x3 0x3 1 Received: 3, 7, … Rejected: 1, 2, 4, 5, 9… 
0x1 0xF 1 Received: 1, 17. Rejected: 9, 16, … 
0x0 0x7F0 1 Received: ID < 16 

See Also 
fcCANBufCfg 

6.3.2.3 fcCANBufCfgTx 
This structure specifies the configuration of a CAN transmit message buffer. This buffer type is used to 
transmit a CAN message with a specific CAN ID only. 



 

 

Created by STAR ELECTRONICS GmbH & Co. KG   

Date created 2021-10-05 Date modified  2021-10-05 Page 151 of 250 
 

3-
00

0
9-

0
S

01
-D

0
3_

A
P

I 
D

oc
um

en
ta

ti
on

_D
2

V
5

-F
.d

oc
x 

 

Typedef struct fcCANBufCfgTx 
{ 
 fcDword ID; 
 fcByte  Data[8]; 
 fcDword DLC : 4; 
 fcDword enableIDExtended : 1; 
 fcDword enableTxAcknowledge : 1; 
 fcDword enableTxRequest : 1; 
 fcDword newData : 1; 
 fcDword Reserved[2]; 
}fcCANBufCfgTx; 

Members 
ID 

Defines the CAN identifier to be transmitted in this message buffer. 
Valid values for a standard CAN ID range from 0x0 – 0x7FF. 
Valid values for an extended CAN ID range from 0x0 – 0x1FFFFFFF. 

Data 
Defines the data for transmission. All of the 8 data bytes can be set. The corresponding DLC 
parameter is used to define the number of bytes to transmit. 

DLC 
Defines the data length (in bytes) to be transmitted. 

enableIDExtended 
If set to 1 the message buffer is defined for extended CAN identifiers only. If set to 0 the message 
buffer is defined for standard CAN identifiers. It is not possible to transmit both versions in one 
message buffer. 

enableTxAcknowledge 
Set this flag to 1 to enable the transmit acknowledge. The FlexCard generates a CAN packet with a 
direction flag = 1 (Tx), if the data is transmitted successfully. 

enableTxRequest 
Set this flag to 1 to indicate that the message is requested to be sent as soon as the 
Communication Controller is in state ‘normal active’. 

newData 
Set this flag to 1 to update the data of the message buffer. Set to 0 if no new data shall be updated. 

Reserved 
Reserved for future use 

See Also 
fcCANBufCfg, fcCANPacket 

6.3.2.4 fcCANBufCfgRemoteRx 
This structure specifies a CAN remote receive message buffer. This buffer type is used to send a CAN 
remote message to request a CAN message with the same CAN identifier. This will be received into the 
message buffer. 

Typedef struct fcCANBufCfgRemoteRx  
{ 
 fcDword ID; 
 fcDword DLC    :4; 
 fcDword enableIDExtended  :1; 
 fcDword enableTxAcknowledge :1; 
 fcDword enableTxRequest  :1; 
 fcDword Reserved[2]; 
}fcCANBufCfgRemoteRx; 

Members 
ID 

Defines the CAN identifier to be received in this message buffer. 
Valid values for a standard CAN ID range from 0x0 – 0x7FF. 
Valid values for an extended CAN ID range from 0x0 – 0x1FFFFFFF. 



 

 

Created by STAR ELECTRONICS GmbH & Co. KG   

Date created 2021-10-05 Date modified  2021-10-05 Page 152 of 250 
 

3-
00

0
9-

0
S

01
-D

0
3_

A
P

I 
D

oc
um

en
ta

ti
on

_D
2

V
5

-F
.d

oc
x 

 

DLC 
Defines the data length (in bytes) to be transmitted. 

enableIDExtended 
If set to 1 the message buffer is defined for extended CAN identifiers only. If set to 0 the message 
buffer is defined for standard CAN identifiers. It is not possible to receive both versions in one 
message buffer. 

enableTxAcknowledge 
Set this flag to 1 to enable the transmit acknowledge. The FlexCard generates a CAN packet 
(RemoteTx) if the data are transmitted successfully. 

enableTxRequest 
Set this flag to 1 to indicate that the message is requested to be sent as soon as the 
Communication Controller is in state ‘normal active’. 

Reserved 
Reserved for future use. 

See Also 
fcCANBufCfg, fcCANPacket 

6.3.2.5 fcCANBufCfgRemoteTx 
This structure specifies a CAN remote transmit message buffer. This buffer type is used to transmit a CAN 
message when this ID is requested by a corresponding CAN remote frame. 

Typedef struct fcCANBufCfgRemoteTx  
{ 
 fcDword ID; 
 fcByte  Data [8]; 
 fcDword DLC                 :4; 
 fcDword enableIDExtended    :1; 
 fcDword enableTxAcknowledge :1; 
 fcDword enableTxRequest     :1; 
 fcDword enableAutoResponse  :1; 
 fcDword newData             :1; 
 fcDword Reserved[2]; 
}fcCANBufCfgRemoteTx; 

Members 
ID 

Defines the CAN identifier to be responded with the same id. 
Valid values for a standard CAN ID range from 0x0 – 0x7FF. 
Valid values for an extended CAN ID range from 0x0 – 0x1FFFFFFF. 

Data 
Defines the data for transmission. All of the 8 data bytes can be set. The corresponding DLC 
parameter is used to define the number of bytes to transmit. 

DLC 
Defines the data length (in bytes) to be transmitted. 

enableIDExtended 
If set to 1 the message buffer is defined for extended CAN identifiers only. If set to 0 the message 
buffer is defined for standard CAN identifiers. It’s not possible to receive both versions in one 
message buffer. 

enableTxAcknowledge 
Set this flag to 1 to enable the transmit acknowledge. The FlexCard generates a CAN packet 
(RemoteTx) if the data are transmitted successfully and the parameter enableAutoResponse is 
set to 1 too. 

enableTxRequest 
Set this flag to 1 to indicate that the message is requested to be sent as soon as the 
Communication Controller is in state ‘normal active’. 

enableAutoResponse 
Set this flag to 1 to enable the buffer to transmit a frame as soon as a corresponding CAN remote 
frame is received. 



 

 

Created by STAR ELECTRONICS GmbH & Co. KG   

Date created 2021-10-05 Date modified  2021-10-05 Page 153 of 250 
 

3-
00

0
9-

0
S

01
-D

0
3_

A
P

I 
D

oc
um

en
ta

ti
on

_D
2

V
5

-F
.d

oc
x 

 

newData 
Set this flag to 1 to update the data of the message buffer. Set to 0 if no new data shall be updated. 

Reserved 
Reserved for future use. 

See Also 
fcCANBufCfg, fcCANPacket 

6.3.2.6 fcCANBufCfg 
This structure describes the configuration of a CAN message buffer. 

Typedef struct fcCANBufCfg 
{ 
 fcCANBufCfgType Type; 
 union  
 { 
  fcCANBufCfgCommon Common; 
  fcCANBufCfgRxAll RxAll; 
  fcCANBufCfgRx Rx; 
  fcCANBufCfgTx Tx; 
  fcCANBufCfgRemoteRx RemoteRx; 
  fcCANBufCfgRemoteTx RemoteTx; 
 }; 
 
}fcCANBufCfg; 

Members 
Type 

Defines the CAN message buffer type. Using type fcCANBufCfgTypeNone disables/resets the 
message buffer. 

Common 
Used for internal purposes. (No support). 

RxAll 
Receive all buffer configuration. 

Rx 
Receive buffer configuration. 

Tx 
Transmit buffer configuration. 

RemoteRx 
Remote receive buffer configuration. 

RemoteTx 
Remote transmit buffer configuration. 

See Also 
fcCANBufCfgType, fcCANBufCfgRxAll, fcCANBufCfgRx, fcCANBufCfgTx, fcCANBufCfgRemoteRx, 
fcCANBufCfgRemoteTx, fcbCANSetMessageBuffer, fcbCANGetMessageBuffer 

6.3.2.7 fcCANCcConfig 
This structure describes the configuration of a CAN Communication Controller. Within this function all 
message buffers will be reset. 

Typedef struct fcCANCcConfig 
{ 
 fcWord BaudRatePrescaler; 
 fcWord SynchronizationJumpWidth; 
 fcWord TimeSegment1; 
 fcWord TimeSegment2; 
 fcDword enableAutomaticRetransmission :1; 
 fcDword Reserved[6]; 
} fcCANCcConfig; 



 

 

Created by STAR ELECTRONICS GmbH & Co. KG   

Date created 2021-10-05 Date modified  2021-10-05 Page 154 of 250 
 

3-
00

0
9-

0
S

01
-D

0
3_

A
P

I 
D

oc
um

en
ta

ti
on

_D
2

V
5

-F
.d

oc
x 

 

Members 
BaudRatePrescaler 

Defines the baud rate prescaler (BRP). Valid values are from 0 to 1023. 
SynchronizationJumpWidth 

Defines the synchronization jump width (SJW). Valid values are from 0 to 3 and must not be larger 
than TSEG1 and TSEG2. 

TimeSegment1 
Defines the time segment 1 (TSEG1). Valid values are from 0 to 15. 

TimeSegment2 
Defines the time segment 2 (TSEG2). Valid values are from 0 to 7. 

enableAutomaticRetransmission 
Set this flag to 1 to enable automatic retransmission. If the CAN Communication Controller has lost 
the arbitration or if an error occurred during the transmission, the message will be retransmitted as 
soon as the CAN bus is free again. 

Reserved 
Reserved for future use. 

See Also 
fcbCANSetCcConfiguration 

Remarks 
The baud rate and the sample point calculation of the CAN Communication Controller depends on 
BaudRatePrescaler, SynchronizationJumpWidth, TimeSegment1 and TimeSegment2. 
Baud rate [baud] = 16 * 106 [Hz] / ((3 + TSEG1 + TSEG2) * (1 + BRP)) 
Sample point [%] = 100 * (2 + TSEG1) / (3 + TSEG1 + TSEG2) 
 
The unit of the baud rate is either Hz or Bit/sec. 1 Hz equals 1 Bit/sec. 1 Kbit/sec equals 1000 Bit/sec. 
The CAN specification defines the BitLength as follows: 
BitLength = Sync_Seg + Prop_Seg+ Phase_Seg1 + Phase_Seg2 = 8-25 Tq (Timequantum) 
D_CAN uses following definitions: 
Tseg1 + 1 = Prop_Seg+ Phase_Seg1 
Tseg2 + 1 = Phase_Seg2 
1 = Sync_Seg 
BitLength = 1 + Tseg1 + 1 + Tseg2 + 1 = 4-25 Tq 
The fcBase API and CANBaudRateCalculator use the D_CAN definitions. 
 

 

Information 

STAR ELECTRONICS GmbH & Co. KG delivers a calculation tool “CANBaudRateCalculator”, which 
can be found in the FlexCard tools directory in the Windows program menu. 
 

 

6.3.2.8 fcCANTxFifoConfig 
This structure describes the configuration of the transmit FIFO feature for a CAN Communication 
Controller. With the transmit FIFO it’s possible to transmit CAN data messages without the configuration of 
several message buffer objects. 

Typedef struct fcCANTxFifoConfig 
{ 
 fcDword BufferNumber; 
 fcDword TimerInterval; 
 fcDword enableRetransmission : 1; 
 fcDword enableTxAcknowledge : 1; 
 fcDword Reserved[3]; 
} fcCANTxFifoConfig; 



 

 

Created by STAR ELECTRONICS GmbH & Co. KG   

Date created 2021-10-05 Date modified  2021-10-05 Page 155 of 250 
 

3-
00

0
9-

0
S

01
-D

0
3_

A
P

I 
D

oc
um

en
ta

ti
on

_D
2

V
5

-F
.d

oc
x 

 

Members 
BufferNumber 

The number of the message buffer used for the transmission. This buffer number is reserved for CAN 
transmit FIFO only and should not be used with other available message buffer functions to avoid 
transmit disturbances. Valid values are from 0 to 128. Set to 0 to deactivate the FIFO. 

TimerInterval 
The transmit FIFO timer interval with microsecond resolution. Valid values are from 200 to 1048575. 
Timer interval depends on the configured CAN baud rate and will be adjusted to a minimum calculated 
value by the driver automatically. 

enableRetransmission 
Set this flag to 1 to enable automatic retransmission. If the transmit FIFO has lost the arbitration or if 
an error occurred during the transmission, the message will be retransmitted with the configured timer 
interval. With disabled flag, the transmit FIFO tries to transmit the CAN message once. In case of 
arbitration lost or error occurrence the next message will be transmitted after the configured timer 
interval. 

enableTxAcknowledge 
Set this flag to 1 to enable transmit acknowledge for all transmitted CAN messages with this FIFO. 

Reserved 
Reserved for future use. 

See Also 
fcbCANSetTxFifoConfiguration, fcbCANGetTxFifoConfiguration, fcbCANTxFifoTransmit 

Remarks 
In case the transmission of any number of message buffers may be requested at the same time, they are 
transmitted subsequently according to their priority (The message buffer numbers are configurable from 1 
up to 128, the lower the message number, the higher is the priority). 
 

 

Information 

This structure is initially supported by FlexCard API version S6V3-F. 

 

6.3.3 fcbCANSetCcConfiguration 

This function configures the CAN Communication Controller. This function cannot be called during 
monitoring. Before the configuration of the CAN CC starts, all CAN message buffers are reset. 

fcError fcbCANSetCcConfiguration( 
 fcHandle hFlexCard, 
 fcCC CC, 
 fcCANCcConfig cfg 
); 

Parameters 
hFlexCard 

[IN] Handle to a FlexCard. 
CC 

[IN] CAN Communication Controller identifier. 
Cfg 

[IN] CAN Communication Controller configuration parameters. 

Return values 
If the function succeeds, the return value is 0. If the value is <> 0, use the functions described in the section 
Error Handling to get extended error information. 



 

 

Created by STAR ELECTRONICS GmbH & Co. KG   

Date created 2021-10-05 Date modified  2021-10-05 Page 156 of 250 
 

3-
00

0
9-

0
S

01
-D

0
3_

A
P

I 
D

oc
um

en
ta

ti
on

_D
2

V
5

-F
.d

oc
x 

 

See Also 
fcbCANGetMessageBuffer, fcCANCcConfig 

6.3.4 fcbCANSetMessageBuffer 

This function configures the message buffers of the CAN Communication Controller. Configuring message 
buffers is allowed in all Communication Controller states. 

fcError fcbCANSetMessageBuffer( 
 fcHandle hFlexCard, 
 fcCC CC, 
 fcDword bufferNumber, 
 fcCANBufCfg cfg, 
 fcBool ignoreTxRqstLock 
); 

Parameters 
hFlexCard 

[IN] Handle to a FlexCard 
CC 

[IN] CAN Communication Controller identifier. 
bufferNumber 

[IN] Identifier of the message buffer to be configured. Valid values are 1 to 128. 
Cfg 

[IN] Message buffer configuration parameters. 
ignoreTxRqstLock 

Set this flag to <> 0 if you want to force a reconfiguration of this buffer although the previous 
message in this buffer was (probably) not transmitted yet. 

Return values 
If the function succeeds, the return value is 0. If the value is <> 0, use the functions described in the section 
Error Handling to get extended error information. 

See Also 
fcCANBufCfg 

6.3.5 fcbCANGetMessageBuffer 

This function reads a specific CAN message buffer configuration. 

fcError fcbCANGetMessageBuffer( 
 fcHandle hFlexCard, 
 fcCC CC, 
 fcDword bufferNumber, 
 fcCANBufCfg* pCfg 
) 

Parameters 
hFlexCard 

[IN] Handle to a FlexCard. 
CC 

[IN] CAN Communication Controller identifier. 
bufferNumber 

[IN] Identifier of the message buffer to be read. Valid values are 1 to 128. 
Cfg 

[OUT] The configuration parameters of the specified message buffer. 



 

 

Created by STAR ELECTRONICS GmbH & Co. KG   

Date created 2021-10-05 Date modified  2021-10-05 Page 157 of 250 
 

3-
00

0
9-

0
S

01
-D

0
3_

A
P

I 
D

oc
um

en
ta

ti
on

_D
2

V
5

-F
.d

oc
x 

 

Return values 
If the function succeeds, the return value is 0. If the value is <> 0, use the functions described in the section 
Error Handling to get extended error information. 

See Also 
fcbCANSetMessageBuffer, fcCANBufCfg 

Example 
// Get all configured transmit message buffers 
std::map<unsigned int, fcCANBufCfg > Buffers; 
unsigned int bufferNr = 1; // The first valid buffer is 1 
while (true) 
{ 
 fcCANBufCfg cfg; 
  
 // as long as no error occurs we try to get each buffer 
 fcError e = fcbCANGetMessageBuffer (m_hFlexCard,fcCC1,bufferNr,&cfg); 
 if (0 != e) break; 
   
 // is this a tx buffer, then add it to our list 
 if (fcCANBufCfgTypeTx == cfg.Type) 
  Buffers[bufferNr] = cfg; 
  
 // next buffer number 
 bufferNr++; 
} 

6.3.6 fcbCANSetTxFifoConfiguration 

This function configures the transmit FIFO feature for a CAN Communication Controller. With the transmit 
FIFO it is possible to transmit CAN data messages without the configuration of several message buffer 
objects. This function cannot be called during monitoring. The FlexCard driver corrects the transmit interval 
if the configured CAN baudrate is too low. After calling fcbCANSetTxFifoConfiguration call 
fcbCANGetTxFifoConfiguration to get the corrected transmit interval. 

fcError fcbCANSetTxFifoConfiguration( 
 fcHandle hFlexCard, 
 fcCC CC, 
 fcCANTxFifoConfig cfg 
) 

Parameters 
hFlexCard 

[IN] Handle to a FlexCard. 
CC 

[IN] CAN Communication Controller identifier. 
Cfg 

[IN] CAN transmit FIFO configuration parameters. 

Return values 
If the function succeeds, the return value is 0. If the value is <> 0, use the functions described in the section 
Error Handling to get extended error information. 

See Also 
fcCANTxFifoConfig, fcbCANSetTxFifoConfiguration, fcbCANTxFifoTransmit 



 

 

Created by STAR ELECTRONICS GmbH & Co. KG   

Date created 2021-10-05 Date modified  2021-10-05 Page 158 of 250 
 

3-
00

0
9-

0
S

01
-D

0
3_

A
P

I 
D

oc
um

en
ta

ti
on

_D
2

V
5

-F
.d

oc
x 

 

Example 
// Configure a transmit CAN FIFO with timer interval of 200 us 
// and use with message buffer index 2 for a high priority transmission 
fcCANTxFifoConfig FifoConfig; 
memset(&FifoConfig, 0, sizeof(fcCANTxFifoConfig)); 
FifoConfig.BufferNumber = 2; 
FifoConfig.TimerInterval = 200; 
FifoConfig.enableRetransmission = 1; 
FifoConfig.enableTxAcknowledge = 1; 
 
fcError e = fcbCANSetTxFifoConfiguration(m_hFlexCard, fcCC1, FifoConfig); 
if (0 != e) {/* Error handling */} 

 

 

Information 

This function is initially supported by FlexCard API version S6V3-F. 

 

6.3.7 fcbCANGetTxFifoConfiguration 

This function reads the transmit FIFO configuration parameters of a CAN Communication Controller. With 
the transmit FIFO it’s possible to transmit CAN data messages without the configuration of several 
message buffer objects. 

fcError fcbCANGetTxFifoConfiguration( 
 fcHandle hFlexCard, 
 fcCC CC, 
 fcCANTxFifoConfig* pCfg 
) 

Parameters 
hFlexCard 

[IN] Handle to a FlexCard. 
CC 

[IN] CAN Communication Controller identifier. 
pCfg 

[OUT] CAN transmit FIFO configuration parameters. 

Return values 
If the function succeeds, the return value is 0. If the value is <> 0, use the functions described in the section 
Error Handling to get extended error information. 

See Also 
fcCANTxFifoConfig, fcbCANSetTxFifoConfiguration, fcbCANTxFifoTransmit 

Example 
// Read the configuration parameters of the transmit CAN FIFO 
fcCANTxFifoConfig FifoConfig; 
memset(&FifoConfig, 0, sizeof(fcCANTxFifoConfig)); 
 
fcError e = fcbCANGetTxFifoConfiguration(m_hFlexCard, fcCC1, &FifoConfig); 
if (0 != e) {/* Error handling */} 

 



 

 

Created by STAR ELECTRONICS GmbH & Co. KG   

Date created 2021-10-05 Date modified  2021-10-05 Page 159 of 250 
 

3-
00

0
9-

0
S

01
-D

0
3_

A
P

I 
D

oc
um

en
ta

ti
on

_D
2

V
5

-F
.d

oc
x 

 

 

Information 

This function is initially supported by FlexCard API version S6V3-F. 

 

6.3.8 fcbCANTxFifoReset 

This function resets the CAN Communication Controller transmit FIFO buffer. CAN data messages in the 
FIFO are lost. 

fcError fcbCANTxFifoReset( 
 fcHandle hFlexCard, 
 fcCC CC, 
 fcBool bOnlyCurrent 
) 

Parameters 
hFlexCard 

[IN] Handle to a FlexCard. 
CC 

[IN] CAN Communication Controller identifier. 
bOnlyCurrent 

[IN] Reset only the current CAN message that is scheduled for transmission by the CAN CC. The 
next CAN message is going to be scheduled for transmission. Current CAN data message is lost. 
Other queued CAN data messages in the FIFO aren’t lost. 

Return values 
If the function succeeds, the return value is 0. If the value is <> 0, use the functions described in the section 
Error Handling to get extended error information. 

See Also 
fcCANTxFifoConfig, fcbCANTxFifoTransmit 

Example 
// Reset the current CAN message, which blocks the schedule for next 
// CAN messages in the transmit CAN FIFO 
bool bResetOnlyCurrent = true; 
fcError e = fcbCANTxFifoReset(m_hFlexCard, fcCC1, bResetOnlyCurrent); 
if (0 != e) {/* Error handling */} 

 

 

Information 

This function is initially supported by FlexCard API version S6V3-F. 

 

6.3.9 fcbCANSetFilterConfiguration 

This function configures the accepted frame ids (CAN, CAN-FD). Only the configured ids are forwarded to 
the user application, all other CAN or CAN-FD frames are rejected. This function can be used on a CAN bus 
or a CAN-FD bus and depends on the type of communication controller. See the configuration notice for 
further details.  



 

 

Created by STAR ELECTRONICS GmbH & Co. KG   

Date created 2021-10-05 Date modified  2021-10-05 Page 160 of 250 
 

3-
00

0
9-

0
S

01
-D

0
3_

A
P

I 
D

oc
um

en
ta

ti
on

_D
2

V
5

-F
.d

oc
x 

 

fcError fcbCANSetFilterConfiguration( 
fcHandle hFlexCard, 
fcCC CC, 
fcDword id, 
fcBool bExt, 
fcBool bCanFd, 
fcBool reset 

) 

Parameters 
hFlexCard 

[IN] Handle to a FlexCard. 
CC 

[IN] Communication controller index. 
Id 

[IN] ID of CAN frame, which will be accept. 
bExt 

[IN] Flag for extended CAN ID. If bExt is true, this frame has an extended ID.   
bCanFd 

[IN] Flag for CANFD frame. If bCanFd is false, this frame is a CAN frame.  
Reset 

[IN] Flag for reset all filters. If Reset is true, all configured filters will be reset.   

Return values 
If the function succeeds, the return value is 0. If the value is <> 0, use the functions described in the section 
Error Handling to get extended error information. 

See Also 
fcCC 

Example 
// Set CAN filter with ID 55 and the already configured filters should be reset.  
fcError e = fcbCANSetFilterConfiguration(handle, ccIndex, 5, false, false, true); 
if (0 != e) {/* Error handling */} 

 

6.4 Transmit 

6.4.1 fcbCANTransmit 

This function writes the data bytes in a CAN Communication Controller transmit buffer of the FlexCard. The 
transmitted data bytes depend on the message buffer configuration. The function returns immediately and 
does not wait for the data frame to arrive on the bus. The CAN message should normally be transmitted as 
soon as possible. Example: If the CAN bus is full of high priority messages, and the user transmits a low 
priority message, this function immediately returns successfully, but the message appears on the bus, only 
when it wins the arbitration. 

In case the transmission of any number of message buffers may be requested at the same time, they are 
transmitted subsequently according to their priority (The message object numbers are configurable from 1 
up to 128, the lower is the message number, the higher is the priority). If the transmit acknowledgment is 
activated, a CAN packet with a direction flag = 1 (Tx) is generated as soon as the message has been 
transmitted. This function should only be called when the FlexCard is in normal active state or when all 
message buffer configurations have been done. 

The transmission may fail, if the buffer is already locked for transmission (fcGetErrorCode returns 
MSG_BUF_LOCKED_FOR_TRANSMISSION). In that case retry later or set the parameter 
ignoreTxRqstLock to true. 



 

 

Created by STAR ELECTRONICS GmbH & Co. KG   

Date created 2021-10-05 Date modified  2021-10-05 Page 161 of 250 
 

3-
00

0
9-

0
S

01
-D

0
3_

A
P

I 
D

oc
um

en
ta

ti
on

_D
2

V
5

-F
.d

oc
x 

 

fcError fcbCANTransmit( 
 fcHandle hFlexCard, 
 fcCC CC, 
 fcDword bufferNumber, 
 fcByte data[8], 
 fcBool transmitNewData, 
 fcBool ignoreTxRqstLock 
); 

Parameters 
hFlexCard 

[IN] Handle to a FlexCard 
CC 

[IN] CAN Communication Controller identifier. 
bufferNumber 

[IN] The number of the message buffer used for the transmission. Valid values are 1 to 128. 
Data 

[IN] The data to be transmitted. The configured DLC in the message buffer determinates the size of 
bytes which will be copied in the transmit buffer. 

transmitNewData 
[IN] Set to <> 0 to update the data of the message buffer. Set to 0 if the previous data shall be sent 
again. 

ignoreTxRqstLock 
[IN] Set this value to <> 0 if you want to force a reconfiguration of this buffer although the previous 
message was not transmitted yet. 

Return values 
If the function succeeds, the return value is 0. If the value is <> 0, use the functions described in the section 
Error Handling to get extended error information. 

See Also 
fcCANBufCfg, fcbCANGetMessageBuffer 

Example 
fcByte data[8]; 
for (int i=0; i<8; i++) data[i]=0xA; 
 
// Transmit new data 
fcError e = fcbCANTransmit(m_hFlexCard, fcCC1, bufferNumber, data, true, true); 
if (0 != e) {/* Error handling */} 

6.4.2 fcbCANTxFifoTransmit 

This function writes a CAN data message into the CAN transmit FIFO buffer of the FlexCard. It holds 
maximum 512 messages. The function returns immediately and does not wait for the data frame to arrive 
on the bus. The message should normally be transmitted as soon as possible. This function should only be 
called when the CAN transmit FIFO is configured. In case the FIFO is full, the error code TX_FIFO_FULL is 
returned. 

fcError fcbCANTxFifoTransmit( 
 fcHandle hFlexCard, 
 fcCC CC, 
 fcDword id, 
 fcBool bExt, 
 fcByte* pData, 
 fcDword dlc 
); 

Parameters 
hFlexCard 

[IN] Handle to a FlexCard 



 

 

Created by STAR ELECTRONICS GmbH & Co. KG   

Date created 2021-10-05 Date modified  2021-10-05 Page 162 of 250 
 

3-
00

0
9-

0
S

01
-D

0
3_

A
P

I 
D

oc
um

en
ta

ti
on

_D
2

V
5

-F
.d

oc
x 

 

CC 
[IN] CAN Communication Controller identifier. 

Id 
[IN] The CAN identifier. Valid values for a standard CAN ID range from 0x0 to 0x7FF. Valid values for 
an extended CAN ID range from 0x0 to 0x1FFFFFFF. 

bExt 
[IN] Set to <> 0 to transmit a CAN message with an extended identifier. Set to 0 to transmit a 
standard CAN message. 

pData 
[IN] The data to be transmitted. 

Dlc 
[IN] The size of bytes which will be copied in the FIFO. 

Return values 
If the function succeeds, the return value is 0. If the value is <> 0, use the functions described in the section 
Error Handling to get extended error information. 

See Also 
fcbCANSetTxFifoConfiguration 

Example 
fcDword id = 0x789; 
bool bExt = false; 
const fcDword dlc = 8; 
fcByte data[dlc]; 
for (int i=0; i<dlc; i++) data[i]=i; 
 
// Put CAN message into the transmit FIFO for scheduling as soon as possible 
fcError e = fcbCANTxFifoTransmit(m_hFlexCard, fcCC1, id, bExt, data, dlc); 
if (0 != e) 
{ 
 // Error handling 
} 

 

 

Information 

This function is initially supported by FlexCard API version S6V3-F. 

 



 

 

Created by STAR ELECTRONICS GmbH & Co. KG   

Date created 2021-10-05 Date modified  2021-10-05 Page 163 of 250 
 

3-
00

0
9-

0
S

01
-D

0
3_

A
P

I 
D

oc
um

en
ta

ti
on

_D
2

V
5

-F
.d

oc
x 

 

7 CAN-FD API 

The following section describes the data structures and features used for CAN-FD functionality. To use 
these functions the FlexCard must have a firmware with a CAN-FD CC and the FlexCard must be licensed 
for CAN. 

 

Information 

All enumerations, structures and functions in this chapter are initially supported by FlexCard 
Windows API version S6V6-F. 

 

7.1 Basic CAN-FD Workflow 

The following figure shows a typical CAN-FD workflow. 

The CAN-FD functions are supported for the CAN Communication Controller type Bosch M_CAN. The Enum 
function returns the struct fcInfoHwSw. Check the struct fcInfoHw.pVersionCC to see whether the 
firmware provides this CC type. 

When you compare the CAN and CAN-FD API functions, the functions fcbCANFDSetCcConfiguration and 
fcbCANFDTransmit were added for CAN-FD. The functions fcbCANGetCcState and 
fcbCANMonitoringStart/Stop are used on the Bosch M_CAN. 

The Bosch M_CAN can be used with the new API functions to connect to either a CAN-HS or a CAN-FD 
network. 

The CCs are counted in following order: First FlexRay, then CAN. CAN-FD CCs count like CAN CCs. 

For example, if the firmware image has 1 FlexRay CC and 4 CAN-FD CCs, the CCs are referred to like this: 

• FlexRay fcCC1 

• CAN fcCC1, fcCC2, fcCC3, fcCC4 

CAN-HS baud rate is 40 Kbit/s to 1 Mbit/s. The maximum CAN-FD baud rate depends on the transceiver. 

Refer to the chapter General Function Availability to find out if the connected FlexCard device supports 
onboard CAN terminations. 

For transmitting CAN data use the function fcbCANFDTransmit. Check the error code to see whether the 
internal transmit buffer had enough space for the frame. 

The FlexCard Windows Developer Setup installs the example application fcDemoCANFD.exe and its source 
code to the installation directory. 

 



 

 

Created by STAR ELECTRONICS GmbH & Co. KG   

Date created 2021-10-05 Date modified  2021-10-05 Page 164 of 250 
 

3-
00

0
9-

0
S

01
-D

0
3_

A
P

I 
D

oc
um

en
ta

ti
on

_D
2

V
5

-F
.d

oc
x 

 

 
Figure 12: Typical CAN-FD function workflow 

 



 

 

Created by STAR ELECTRONICS GmbH & Co. KG   

Date created 2021-10-05 Date modified  2021-10-05 Page 165 of 250 
 

3-
00

0
9-

0
S

01
-D

0
3_

A
P

I 
D

oc
um

en
ta

ti
on

_D
2

V
5

-F
.d

oc
x 

 

7.2 CAN-FD DLC 

The CAN-FD specification defines following four bit long DLCs (data length codes). 

DLC (decimal) Number of bytes 
0 0 
1 1 
2 2 
3 3 
4 4 
5 5 
6 6 
7 7 
8 8 
9 12 
10 16 
11 20 
12 24 
13 32 
14 48 
15 64 

 

DLCs smaller and equal 8 are possible in a CAN network. DLCs smaller and equal 15 are possible in CAN-
FD networks. 

7.3 Configuration 

7.3.1 Enumerations 

7.3.1.1 fcCANFDFrameFormat 
This enumeration describes the CAN-FD frame format. 

Typedef enum fcCANFDFrameFormat 
{ 

fcCANFDFormatUnspecified = 0, 
fcCANFDFormatIso11898_1, 
fcCANFDFormatBoschSpecV1_0, 

} fcCANFDFrameFormat; 

Members 
fcCANFDFormatUnspecified 

Unspecified CAN-FD frame format. 
fcCANFDFormatIso11898_1 

CAN-FD frame format according to ISO 11898-1 (CAN/ CAN-FD). 
fcCANFDFormatBoschSpecV1_0 

CAN-FD frame format according to CAN-FD Bosch Specification 1.0. 

 See Also 
fcbCANFDSetCcConfiguration 



 

 

Created by STAR ELECTRONICS GmbH & Co. KG   

Date created 2021-10-05 Date modified  2021-10-05 Page 166 of 250 
 

3-
00

0
9-

0
S

01
-D

0
3_

A
P

I 
D

oc
um

en
ta

ti
on

_D
2

V
5

-F
.d

oc
x 

 

7.3.2 Structures 

7.3.2.1 fcCANCcBitTime 
This structure describes the configuration of an M_CAN communication controller. An M_CAN controller is 
capable of CAN-HS and CAN-FD communication. 

Typedef struct fcCANCcBitTime 
{ 

fcWord BaudRatePrescaler; 
fcWord SynchronizationJumpWidth; 
fcWord TimeSegment1; 
fcWord TimeSegment2; 
fcDword Reserved[4]; 

} fcCANCcBitTime; 

Members 
BaudRatePrescaler 

Defines the baud rate prescaler (BRP). 
Valid range for nominal bit timing: 1 ... 512 
Valid range for data bit timing: 1 ... 32 

SynchronizationJumpWidth 
Defines the synchronization jump width (SJW). 
Valid range for nominal bit timing: 1 ... 128 
Valid range for data bit timing: 1 ... 16 

TimeSegment1 
Defines the time segment 1 (TSEG1). 
This value is equal Prop_Seg + Phase_Seg1 
from the specification. 
Valid range for nominal bit timing: 2 ... 256 
Valid range for data bit timing: 1 ... 32 

TimeSegment2 
Defines the time segment 2 (TSEG2). 
This value is equal Phase_Seg2 from the specification. 
Valid range for nominal bit timing: 1 ... 128 
Valid range for data bit timing: 1 ... 16 

Reserved 
Reserved for future use. 

See Also 
fcbCANFDSetCcConfiguration 

Remarks 
The Sync_Seg from the specification is always 1. The information processing time from the specification is 
0. The clock frequency for FlexCard USB and FlexCard PMC-2 is 20 MHz, but for FlexDevice and FlexCard 
PXIe3 and FlexCard PCIe3 the clock frequency is 40 MHz. 

The baud rate and the sample point calculation by the CAN communication controller depends on 
BaudRatePrescaler, SynchronizationJumpWidth, TimeSegment1 and TimeSegment2. 

Calculation for FlexCards with 20 MHz clock frequency. 

Baud rate [baud] = 20 * 10^6 [Hz] / ((1 + TSEG1 + TSEG2) * BRP) 

Sample point [%] = 100 * (1 + TSEG1) / (1 + TSEG1 + TSEG2) 

7.3.2.2 fcCANFDCcConfig 

This structure describes the configuration of a CAN-FD Communication Controller. 



 

 

Created by STAR ELECTRONICS GmbH & Co. KG   

Date created 2021-10-05 Date modified  2021-10-05 Page 167 of 250 
 

3-
00

0
9-

0
S

01
-D

0
3_

A
P

I 
D

oc
um

en
ta

ti
on

_D
2

V
5

-F
.d

oc
x 

 

Typedef struct fcCANFDCcConfig 
{ 

fcCANCcBitTime nominalBitTime; 
fcCANCcBitTime dataBitTime; 
fcCANFDFrameFormat frameFormat; 
fcDword enableAutomaticRetransmission :1; 
fcDword enableCANFDOperation :1; 
fcDword enableCANFDBitRateSwitch :1; 
fcDword Reserved[6]; 

} fcCANFDCcConfig; 

Members 
nominalBitTime 

Please note: Nominal and data bit time have different ranges. Relevant for CAN and CAN-FD. 
dataBitTime 

The data bit rate must be greater or equal the nominal bit rate. Relevant for CAN-FD. 
frameFormat 

Please note: All communication partners in a CAN-FD network must use the same frame format. 
Relevant for CAN-FD. 

enableAutomaticRetransmission 
Set this flag to 1 to enable automatic retransmission. If the CAN communication controller has lost 
the arbitration or if an error occurred during the transmission, the message will be retransmitted as 
soon as the CAN bus is free again. 
Relevant for CAN and CAN-FD. 

enableCANFDOperation 
Enables CAN-FD operation. When CAN-FD is enabled, it is also possible to transmit normal CAN 
frames. This is decided while transmitting the frame. 
Relevant for CAN and CAN-FD. 

enableCANFDBitRateSwitch 
Specifies that it is possible to switch the bit rate for CAN-FD frames. 
Relevant for CAN-FD. 

Reserved 
Reserved for future use. 

See Also 
fcbCANFDSetCcConfiguration 

7.3.3 fcbCANFDSetCcConfiguration 

This function configures the CAN-FD Communication Controller. This function cannot be called during 
monitoring. 

fcError fcbCANFDSetCcConfiguration( 
 fcHandle hFlexCard, 
 fcCC CC, 
 fcCANFDCcConfig cfg 
); 

Parameters 
hFlexCard 

[IN] Handle to a FlexCard. 
CC 

[IN] CAN Communication Controller identifier. 
Cfg 

[IN] CAN-FD Communication Controller configuration parameters. 

Return values 
If the function succeeds, the return value is 0. If the value is <> 0, use the functions described in the section 
Error Handling to get extended error information. 



 

 

Created by STAR ELECTRONICS GmbH & Co. KG   

Date created 2021-10-05 Date modified  2021-10-05 Page 168 of 250 
 

3-
00

0
9-

0
S

01
-D

0
3_

A
P

I 
D

oc
um

en
ta

ti
on

_D
2

V
5

-F
.d

oc
x 

 

See Also 
fcCANFDCcConfig 

Example 
// Configuration settings for FlexCard PMC-II 
 
fcCANFDCcConfig CcConfig; 
memset(&CcConfig, 0, sizeof(fcCANFDCcConfig)); 
 
// 500 Kbit/s nominal 
CcConfig.nominalBitTime.BaudRatePrescaler = 1; 
CcConfig.nominalBitTime.SynchronizationJumpWidth = 1; 
CcConfig.nominalBitTime.TimeSegment1 = 29; 
CcConfig.nominalBitTime.TimeSegment2 = 10; 
 
// 4 Mbit/s data 
CcConfig.dataBitTime.BaudRatePrescaler = 1; 
CcConfig.dataBitTime.SynchronizationJumpWidth = 1; 
CcConfig.dataBitTime.TimeSegment1 = 2; 
CcConfig.dataBitTime.TimeSegment2 = 2; 
 
CcConfig.frameFormat = fcCANFDFormatIso11898_1; 
CcConfig.enableAutomaticRetransmission = true; 
CcConfig.enableCANFDOperation = true; 
CcConfig.enableCANFDBitRateSwitch = true; 
 
fcError e = fcbCANSetCcConfiguration(handle, fcCC1, CcConfig); 
if (0 != e) {/* Error handling*/} 

 

7.3.4 fcbCANSetFilterConfiguration 

This function configures the CAN-FD frame ids accepted by the Analyzer. Only the CAN-FD ids which are 
configured by setting filter are forwarded to the Analyzer, all other CAN-FD frames are rejected. To 
configure a CAN-FD filter, bCanFd must be set to true.  

fcError fcbCANSetFilterConfiguration( 
fcHandle hFlexCard, 
fcCC CC, 
fcDword id, 
fcBool bExt, 
fcBool bCanFd, 
fcBool reset 

) 

Parameters 
hFlexCard 

[IN] Handle to a FlexCard. 
CC 

[IN] Communication controller index. 
Id 

[IN] ID of CAN-FD frame, which will be accept. 
bExt 

[IN] Flag for extended CANFD-ID. If bExt is true, this frame has an extended ID. 
bCanFd 

[IN] Flag for CAN-FD frame. If bCanFd is true, this frame is a CAN-FD frame. 
Reset 

[IN] Flag for reset all filters. If Reset is true, all configured filters will be reset. 

Return values 
If the function succeeds, the return value is 0. If the value is <> 0, use the functions described in the section 
Error Handling to get extended error information. 



 

 

Created by STAR ELECTRONICS GmbH & Co. KG   

Date created 2021-10-05 Date modified  2021-10-05 Page 169 of 250 
 

3-
00

0
9-

0
S

01
-D

0
3_

A
P

I 
D

oc
um

en
ta

ti
on

_D
2

V
5

-F
.d

oc
x 

 

See Also 
fcCC 

Example 
// Set CANFD filter with extended ID 268435968 and the already configured filters 
should be reset.  
fcError e = fcbCANSetFilterConfiguration(handle, ccIndex, 268435968, true, true, 
true); 
if (0 != e) {/* Error handling */} 

 

7.4 Transmit 

7.4.1 Structures 

7.4.1.1 fcCANFDTxFrame 
This structure contains a CAN/ CAN-FD frame that can be transmitted by a CAN-FD communication 
controller. 

Typedef struct fcCANFDTxFrame 
{ 

fcDword ID; 
fcDword DLC :4; 
fcByte data[64]; 
fcBool enableIDExtended; 
fcBool enableTxAcknowledge; 
fcBool enableCanFdFormat; 
fcBool enableCanFdBitrateSwitch; 
fcDword reserved; 

} fcCANFDTxFrame; 

Members 
ID 

Defines the CAN identifier to be transmitted in this message buffer. Valid values for a standard CAN 
Id range from 0x0 to 0x7FF. Valid values for an extended CAN Id range from 0x0 to 0x1FFFFFFF. 

DLC 
Defines the data length to be transmitted. Note that the length is coded with four bits according to 
the CAN/ CAN-FD standard. 

Data 
The payload data. 

enableIDExtended 
If set to 1 the CAN identifier of the message is defined as extended. If set to 0 the CAN identifier is 
defined as standard. 

enableTxAcknowledge 
When this bit is selected, the FlexCard generates a Tx acknowledge packet if the frame was 
transmitted correctly. 

enableCanFdFormat 
Specifies whether the frame has a CAN format or a CAN-FD format. 

enableCanFdBitrateSwitch  
Specifies whether the frame uses bit rate switching. This is only relevant if enableCanFdFormat 
is configured. 

Reserved 
Reserved for future use. 

See Also 
fcbCANFDTransmit 

7.4.2 fcbCANFDTransmit 

This function writes the data bytes in a CAN-FD communication controller of the FlexCard. The function 
returns immediately and does not wait for the data frame to arrive on the bus. The message should 
normally be transmitted as soon as possible. The FlexCard internally uses a Tx FIFO which holds maximum 



 

 

Created by STAR ELECTRONICS GmbH & Co. KG   

Date created 2021-10-05 Date modified  2021-10-05 Page 170 of 250 
 

3-
00

0
9-

0
S

01
-D

0
3_

A
P

I 
D

oc
um

en
ta

ti
on

_D
2

V
5

-F
.d

oc
x 

 

32 messages. The messages appear on the bus in the order in which they were transmitted by the user. If 
the transmit acknowledgment is activated, a CAN-FD packet with a direction flag = 1 (Tx) is generated as 
soon as the message has been transmitted. This function should only be called when the FlexCard is in 
normal active state. If the internal Tx message fifo is full, the error TX_FIFO_FULL is returned and the 
message is not transmitted. 

Sending CAN Remote frames via the function fcbCANFDTransmit is not supported. 

fcError fcbCANFDTransmit( 
 fcHandle hFlexCard, 
 fcCC CC, 
 const fcCANFDTxFrame* pFrame 
); 

Parameters 
hFlexCard 

[IN] Handle to a FlexCard. 
CC 

[IN] CAN Communication Controller identifier. 
pFrame 

[IN] The frame that should be transmitted. This struct contains the payload data and configuration 
options. 

Return values 
If the function succeeds, the return value is 0. If the value is <> 0, use the functions described in the section 
Error Handling to get extended error information. 

See Also 
fcCANFDTxFrame 

Example 
fcCANFDTxFrame frame1; 
memset(&frame1, 0, sizeof(frame1)); 
frame1.DLC = 0xF; // this Dlc means 64 byte payload length 
frame1.ID = 1; 
frame1.enableIDExtended = false; 
frame1.enableCanFdBitrateSwitch = true; 
frame1.enableCanFdFormat = true; 
frame1.enableTxAcknowledge = true; 
 
fcError e = fcbCANFDTransmit(handle, fcCC1, &frame1); 
fcErrorCode ec = fcGetErrorCode(e); 
if (TX_FIFO_FULL == ec) 
{ 
    // handle error. E.g. wait and retransmit. 
} 
else if(NONE != ec) 
{ 
    // handle error 
} 

 



 

 

Created by STAR ELECTRONICS GmbH & Co. KG   

Date created 2021-10-05 Date modified  2021-10-05 Page 171 of 250 
 

3-
00

0
9-

0
S

01
-D

0
3_

A
P

I 
D

oc
um

en
ta

ti
on

_D
2

V
5

-F
.d

oc
x 

 

8 Ethernet API 

The following section describes the data structures and features used for Ethernet functionality. To use 
these functions the FlexCard must have a firmware with an Ethernet Controller. Currently the Ethernet API 
is only available for the FlexCard PXIe3, FlexCard PCIe3 and FlexDevice. 

 

Information 

All enumerations, structures and functions in this chapter are initially supported by FlexCard 
Windows API version S6V7-F. 

 

8.1 Initialization 

8.1.1 Enumerations 

8.1.1.1 fcEthMonitoringMode 
This enumeration defines the different modes available, used to monitor an ethernet bus. 

typedef enum fcEthMonitoringMode 
{ 

fcEthMonitoringPassive= 0, 
} fcEthMonitoringMode; 

Members 
fcEthMonitoringPassive 

Monitors the ethernet in passive mode without impacting the real bus traffic. 

See Also 
fcbEthMonitoringStart 

8.1.2 fcbEthMonitoringStart 

This function is used to start the monitoring of an ethernet channel. Set the configuration with 
fcbEthSetCcConfiguration before calling this function. 

fcError fcbEthMonitoringStart ( 
 fcHandle hFlexCard, 
 fcCC CC, 
 fcEthMonitoringMode mode 
 fcBool resetTimestamps, 
); 

Parameters 
hFlexCard 

[IN] Handle to a FlexCard. 
CC 

[IN] Index of the Ethernet controller. 
Mode 

[IN] The monitoring mode. See fcEthMonitoringMode for details which monitoring mode is 
supported. 

restartTimestamps 
[IN] Set this parameter to 0 to restart the measurement without resetting the FlexCard timestamp. 
Set it to <> 0 to start the measurement from the beginning. The timestamps have microsecond 
resolution. 

Return values 
If the function succeeds, the return value is 0. If the value is <> 0, use the functions described in the section 
Error Handling to get extended error information. 



 

 

Created by STAR ELECTRONICS GmbH & Co. KG   

Date created 2021-10-05 Date modified  2021-10-05 Page 172 of 250 
 

3-
00

0
9-

0
S

01
-D

0
3_

A
P

I 
D

oc
um

en
ta

ti
on

_D
2

V
5

-F
.d

oc
x 

 

 

 

Information 

After the monitoring has successfully started, the receive process must be started as soon as 
possible to avoid an overflow (error packet fcErrFlexcardOverflow is received). Once an 
overflow occurred, no more packets can be received. The monitoring must be stopped and started 
again. 

See Also 
fcbEthMonitoringStop, fcEthMonitoringMode 

Example 
// Precondition: valid flexcard handle exists and the flexcard is  
// already configured. 
 
fcCC eCC = fcCC1; 
fcError e = fcbEthMonitoringStart(hFlexCard,eCC,true,fcEthMonitoringPassive); 
if (0 == e)  
{ 
 // Run your receive thread/routine 
  //   ... 
  
 // … when done. Stop it … 

fcbEthMonitoringStop(hFlexCard, eCC); 
 
}  
else 
{ 
  // error handling … 
} 

8.1.3 fcbEthMonitoringStop 

This function stops the Ethernet channel measurement of the selected controller. 

fcError fcbEthMonitoringStop( 
 fcHandle hFlexCard, 
 fcCC CC 
) 

Parameters 
hFlexCard 

[IN] Handle to FlexCard. 
CC 

[IN] Index of the Ethernet Controller. 

Return values 
If the function succeeds, the return value is 0. If the value is <> 0, use the functions described in the section 
Error Handling to get extended error information. 

See Also 
fcbEthMonitoringStart 

8.2 Configuration 

8.2.1 Enumerations 

8.2.1.1 fcEthMode 
This enumeration describes Ethernet Mode, that includes the following information: 



 

 

Created by STAR ELECTRONICS GmbH & Co. KG   

Date created 2021-10-05 Date modified  2021-10-05 Page 173 of 250 
 

3-
00

0
9-

0
S

01
-D

0
3_

A
P

I 
D

oc
um

en
ta

ti
on

_D
2

V
5

-F
.d

oc
x 

 

Data Transfer Rate, Connection Cable Type, Transmission Direction (relevant only to Automotive Ethernet) 
Some Modes are only usable for Ethernet FlexTinys, while others for Automotive Ethernet FlexTinys. 
Abbrevitaions used are 

Base   stands for baseband transmission  

T1/TX   stands for type of connection cable used 

10/100/1000  stands for 10/100/1000 Mbps (Mega bits per second) data transfer rate 

Master   stands for Master-Slave direction (relevant to Automotive Ethernet) 

Slave   stands for Slave-Master direction 

Auto  stands for Auto Negotitaion (relevant only to Ethernet). In this Mode the channel 
decides the suitable data transfer rate based on negotiation. 

Fixed   stands for fixed data transfer used (No Auto Negotiation) 

Automotive Ethernet 100BASE-T1, 1000BASE-T1 

Typedef enum fcEthMode 
{ 
 fcEthMode100BaseT1Master = 1, 
 fcEthMode100BaseT1Slave, 
 fcEthMode1000BaseT1Master, 
 fcEthMode1000BaseT1Slave, 
 fcEthModeAuto, 
 fcEthMode1000BaseTXFixed, 
 fcEthMode100BaseTXFixed, 

fcEthMode10BaseTXFixed, 
} fcEthMode; 

Members 
fcEthMode100BaseT1Master 

100BASE-T1 Master-Slave Transmission Direction 
fcEthMode100BaseT1Slave 

100BASE-T1 Slave-Master Transmission Direction 
fcEthMode1000BaseT1Master 

1000BASE-T1 Master-Slave Transmission Direction 
fcEthMode1000BaseT1Slave 

1000BASE-T1 Slave-Master Transmission Direction 
fcEthModeAuto 

Ethernet Mode: Auto Negotiation, possible rates used10/100/1000 Mbps 
fcEthMode1000BaseTXFixed 

Ethernet Mode: 1000 Mbps 
fcEthMode100BaseTXFixed 

Ehernet Mode: 100 Mbps 
fcEthMode10BaseTXFixed 

Ehernet Mode: 10 Mbps 
 

See Also 
fcCANBufCfg 

8.2.2 Structures 

8.2.2.1 fcEthCcConfig 
This structure describes the configuration of an Ethernet Communication Controller. 



 

 

Created by STAR ELECTRONICS GmbH & Co. KG   

Date created 2021-10-05 Date modified  2021-10-05 Page 174 of 250 
 

3-
00

0
9-

0
S

01
-D

0
3_

A
P

I 
D

oc
um

en
ta

ti
on

_D
2

V
5

-F
.d

oc
x 

 

Typedef struct fcEthCcConfig 
{ 
 fcEthMode Mode; 
 fcBool PromiscuousMode ; 
 fcByte MAC[6]; 
 fcByte VLANCount ; 
 fcWord* VLANs; 
} fcEthCcConfig; 

Members 
Mode 

Ethernet Mode indicates the data transfer rate, the connection cable type and in case of Automotive 
Ethernet the transmission direction. Some Modes relates to Ethernet while others to Automotive 
Ethernet. 

PromiscuousMode 
Promiscous Mode (currently not supported) 
 True:  Channel receives all frames Without MAC Address Check.  
 False: Channel receives frames from specific MAC Addresses.  

MAC 
Mac Address (Media Access Control) of Hardware Channel. 

VLANCount 
Total count of VLAN IDs (Virtual Local Area Networks). 

VLANs 
Pointer to and array of VLAN IDs (Virtual Local Area Networks). VLAN IDs must be provided to be 
able to receive and send frames from these VLAN IDs on a Channel. 

See Also 
fcbCANSetCcConfiguration 

 

8.2.2.2 fcEthFilterConfig 

This structure describes the configuration of a ethernet filter. 

Typedef struct fcEthFilterConfig 
{  
    struct 
    { 
        fcByte FlagDstMac : 1;  
        fcByte FlagSrcMac : 1;  
        fcByte FlagVlanId : 1;  
        fcByte FlagEtherType : 1;  
        fcByte FlagDstIpv4 : 1;  
        fcByte FlagSrcIpv4 : 1;  
        fcByte FlagDstPort : 1;  
        fcByte FlagSrcPort : 1;  

}Flags; 
 
fcByte Reserved; 
fcByte DstMac[6]; 
fcByte SrcMac[6]; 
fcWord VlanId; 
fcWord EtherType; 
fcByte DstIpv4[4]; 
fcByte SrcIpv4[4]; 
fcWord DstPort; 
fcWord SrcPort; 

} fcEthFilterConfig; 
 

Members 
Flags.FlagDstMac 

Flag for destination MAC filter.  
 1: Destination MAC will be used in filter.  
 0: Destination MAC filter will be not used in filter.  



 

 

Created by STAR ELECTRONICS GmbH & Co. KG   

Date created 2021-10-05 Date modified  2021-10-05 Page 175 of 250 
 

3-
00

0
9-

0
S

01
-D

0
3_

A
P

I 
D

oc
um

en
ta

ti
on

_D
2

V
5

-F
.d

oc
x 

 

Flags.FlagSrcMac 
Flag for source MAC filter. 
 1: Source MAC will be used in filter.  
 0: Source MAC will be not used in filter.  

Flags.FlagVlanId 
Flag for VLAN filter. 
 1: VLAN will be used in filter.  
 0: VLAN will be not used in filter. 

Flags.FlagEtherType 
Flag for EtherType filter. 

 1: EtherType will be used in filter.  
 0: EtherType will be not used in filter.  

Flags.FlagDstIpv4 
Flag for destination IPv4 filter. 

 1: Destination IPv4 will be used in filter.  
 0: Destination IPv4 will be not used in filter.  

Flags.FlagSrcIpv4 
Flag for source IPv4 filter. 

 1: Source IPv4 will be used in filter.  
 0: Source IPv4 will be not used in filter.  

Flags.FlagDstPort 
Flag for desination port filter. 

 1: Desination port will be used in filter.  
 0: Desination port will be not used in filter.  

Flags.FlagSrcPort 
Flag for source port filter. 

 1: Source port will be used in filter.  
 0: Source port will be not used in filter.  

Reserved 
Reserved for future use. 

DstMac[6] 
Destination MAC address of ethernet frame, which will be accept  

SrcMac[6] 
Source MAC address of ethernet frame, which will be accept  

VlanId 
VLAN Id of ethernet frame, which will be accept  

EtherType 
Type of ethernet frame, which will be accept  

DstIpv4[4] 
Destination IPv4 address of ethernet frame, which will be accept  

SrcIpv4[4] 
Source IPv4 address of ethernet frame, which will be accept  

DstPort 
Destination port of ethernet frame, which will be accept  

SrcPort 
Source port of ethernet frame, which will be accept  

 
See Also 
 fcbEthSetFilterConfiguration 

8.2.3 fcbEthSetCcConfiguration 

This function configures the Ethernet Communication Controller. Call this function before calling 
fcbEthMonitoringStart. 



 

 

Created by STAR ELECTRONICS GmbH & Co. KG   

Date created 2021-10-05 Date modified  2021-10-05 Page 176 of 250 
 

3-
00

0
9-

0
S

01
-D

0
3_

A
P

I 
D

oc
um

en
ta

ti
on

_D
2

V
5

-F
.d

oc
x 

 

fcError fcbEthSetCcConfiguration( 
 fcHandle hFlexCard, 
 fcCC CC, 
 fcEthCcConfig cfg 
); 

Parameters 
hFlexCard 

[IN] Handle to a FlexCard. 
CC 

[IN] Ethernet Communication Controller identifier. 
Cfg 

[IN] Ethernet Communication Controller configuration parameters. 

Return values 
If the function succeeds, the return value is 0. If the value is <> 0, use the functions described in the section 
Error Handling to get extended error information. 

See Also 

8.2.4 fcbEthSetFilterConfiguration  

This function configures the ethernet filter for the selected ethernet controller. Only the ethernet frames 
included in the filter configuration are forwarded, all other ethernet frames are rejected. See the 
configuration notice for further details. This function can also be called while the ethernet monitoring is 
running. 

fcError fcbEthSetFilterConfiguration( 
 fcHandle hFlexCard, 
 fcCC CC, 
 fcBool combinedFilter, 
 fcEthFilterConfig filterCfg, 
 fcBool reset 
); 
 

Parameters 
hFlexCard 

[IN] Handle to a FlexCard. 
CC 

[IN] Communication controller index. 
combinedFilter 

[IN] Flag for combined filter. If value is 1, the filter is a combined filter. 
If value is 0, the filter is not a combined filter. 

filterCfg 
[IN] Filter configuration parameters  

Reset 
[IN] If value is 1, all configured filters will be reset. 
If value is 0, no filter will be reset. New filter will be added to the existing list of filters. 

Return values 
If the function succeeds, the return value is 0. If the value is <> 0, use the functions described in the section 
Error Handling to get extended error information. 

See Also 
 fcEthFilterConfig 

 



 

 

Created by STAR ELECTRONICS GmbH & Co. KG   

Date created 2021-10-05 Date modified  2021-10-05 Page 177 of 250 
 

3-
00

0
9-

0
S

01
-D

0
3_

A
P

I 
D

oc
um

en
ta

ti
on

_D
2

V
5

-F
.d

oc
x 

 

Example 
// Set a ethernet filter with only VLAN 10 and the already configured filters should 
be reset.  
fcEthFilterConfig filterCfg = {0}; 
filterCfg.Flags.FlagVlanId = 1; 
filterCfg.VlanId = 10; 
fcError e = fcbEthSetFilterConfiguration(handle, ccIndex, false, filterCfg, true); 
if (0 != e) {/* Error handling */} 
 
 
// Set a ethernet combined filter with VLAN 20 and destination port 3333. The already 
configured filters should be reset.  
fcEthFilterConfig filterCfg = {0}; 
filterCfg.Flags.FlagVlanId = 1; 
filterCfg.Flags.FlagDstPort = 1; 
filterCfg.VlanId = 20; 
filterCfg.DstPort = 3333; 
e = fcbEthSetFilterConfiguration(handle, ccIndex, true, filterCfg, true); 
if (0 != e) {/* Error handling */} 

8.3 Transmit 

8.3.1 fcbEthTransmit 

This function writes the data bytes in an Ethernet communication controller of the FlexCard. The function 
returns immediately and does not wait for the data frame to arrive on the bus. The message should normally 
be transmitted as soon as possible. The messages appear on the bus in the order in which they were 
transmitted by the user. 

fcError fcbEthTransmit( 
 fcHandle hFlexCard, 
 fcCC CC, 
 const fcByte* pRawEthernetFrame, 
 fcWord lengthOfEthernetFrame 
); 

Parameters 
hFlexCard 

[IN] Handle to a FlexCard. 
CC 

[IN] Ethernet Communication Controller identifier. 
pRawEthernetFrame 

[IN] Ethernet raw frame to transmit. This includes the following fields (Layer 2 Ethernet frame 
without Frame check sequence (32-bit CRC): 
MAC Destination    : 6 octets 
MAC Source    : 6 octets 
802.1Q tag (optional)   : 4 octets 
Ethertype (Ethernet II) or length (IEEE 802.3) : 2 octets 
Payload     : 46‑1500 octets 

lengthOfEthernetFrame 
[IN] Length of the ethernet frame in number of octets. 

 

Return values 
If the function succeeds, the return value is 0. If the value is <> 0, use the functions described in the section 
Error Handling to get extended error information. 

See Also 



 

 

Created by STAR ELECTRONICS GmbH & Co. KG   

Date created 2021-10-05 Date modified  2021-10-05 Page 178 of 250 
 

3-
00

0
9-

0
S

01
-D

0
3_

A
P

I 
D

oc
um

en
ta

ti
on

_D
2

V
5

-F
.d

oc
x 

 

9 Self Synchronization API 

The following section describes the data structures and features used for Self Sync functionality. To use 
these functions the FlexCard must have a firmware with exactly one FlexRay CC and the FlexCard must be 
licensed for FlexRay. 

To also be able to test FlexRay nodes that do not take part actively in the synchronization process of a 
FlexRay network, the FlexCard provides the possibility to generate a second start-up/synchronization 
frame. Thus, the FlexCard synchronizes the FlexRay network independently. Self synchronization runs on 
the first Communication Controller. 

If TxAcknowledgeEnable is set to disabled for the Self Synchronization feature, no 
fcPacketTypeTxAcknowledge is generated. No fcBase packet is generated for the Self Synchronization 
frame, also no fcPacketTypeFlexRayFrame. 

If TxAcknowledgeEnable is set to enabled for the Self Synchronization feature, an 
fcPacketTypeTxAcknowledge with fcCC2 is generated. No fcPacketTypeFlexRayFrame is generated for the 
Self Synchronization frame. 

 

 

Information 

All enumerations, structures and functions in this chapter are initially supported for FlexCard 
Cyclone II (SE) devices by: 

 FlexCard Windows API version S3V0-F. 

 FlexCard Linux API version S2V0-F. 

 FlexCard Xenomai API version S4V2-F. 
 

 

Information 

This additional API is also initially supported for: 

 FlexCard PMC devices with only one FlexRay Communication Controller and the FlexCard 
API version S4V2-F. 

 FlexCard PMC-II devices with only one FlexRay Communication Controller and the 
FlexCard API version S5V1-F. 

 FlexCard USB-M devices with the FlexCard API version S6V2-F. 

9.1 Configuration 

9.1.1 fcbConfigureMessageBufferSelfSynchronization 

This function configures up to 2 additional start-up/synchronization message buffers. Configuring message 
buffers is only allowed if the Communication Controller is in its configuration state, fcStateConfig. The 
message buffer needs to be defined as fcMsgBufCfgTx. The SyncFrameIndicator and 
StartupFrameIndicator need to be set, while CycleCounterFilter must be set to 0. 

FcError fcbConfigureMessageBufferSelfSynchronization( 
fcHandle hFlexCard, 
fcDword* bufferId, 
fcMsgBufCfg cfg 

) 

Parameters 
hFlexCard 

[IN] Handle to a FlexCard 



 

 

Created by STAR ELECTRONICS GmbH & Co. KG   

Date created 2021-10-05 Date modified  2021-10-05 Page 179 of 250 
 

3-
00

0
9-

0
S

01
-D

0
3_

A
P

I 
D

oc
um

en
ta

ti
on

_D
2

V
5

-F
.d

oc
x 

 

bufferId 
[OUT] Message buffer identifier. If the configuration was successful, the message buffer identifier is 
greater than 0. This identifier will be required to transmit the content of the buffer. 

Cfg 
[IN] Message buffer configuration parameters 

Return values 
If the function succeeds, the return value is 0. If the value is <> 0, use the functions described in the section 
Error Handling to get extended error information. 

Remarks 
Only one additional start-up/synchronization ID can be defined. Therefore maximum 2 additional message 
buffers can be configured: fcChannelA and fcChannelB or fcChannelBoth. Before configuring the 
message buffers, it is necessary to set up the global communication parameters (cluster parameters). 
Calling fcbFRSetCcConfiguration, fcbFRSetCcConfigurationChi or 
fcbFRSetCcConfigurationCANdb will reset the additional start-up/synchronization frames. 

See Also 
fcMsgBufCfg, fcMsgBufCfgTx, fcbReconfigureMessageBufferSelfSynchronization, 
fcbGetCcMessageBufferSelfSynchronization, 
fcbResetCcMessageBuffersSelfSynchronization, fcbFRSetMsgBufCfgMode 

Example 
// The following code configures a self start-up/synch transmit buffer 
fcMsgBufCfg cfg; 
memset(&cfg, 0, sizeof(fcMsgBufCfg)); 
 
cfg.Type = fcMsgBufTx; 
cfg.ChannelFilter = fcChannelA; 
cfg.CycleCounterFilter = 0x0;       // sync frames must appear in every cycle 
 
cfg.Tx.FrameId = 3;                 // unused slotId of static segment  
cfg.Tx.PayloadLength = 2; 
cfg.Tx.PayloadLengthMax = 127; 
cfg.Tx.PayloadPreambleIndicator = 0; 
cfg.Tx.SyncFrameIndicator = 1;      // mandatory to be set to 1 
cfg.Tx.StartupFrameIndicator = 1;   // mandatory to be set to 1 
cfg.Tx.TxAcknowledgeEnable= 1; 
cfg.Tx.TransmissionMode = fcMsgBufTxSingleShot; 
 
unsigned int bufIdx = 0; 
fcError e=fcbConfigureMessageBufferSelfSynchronization(hFlexCard,&bufIdx,cfg); 

 

9.1.2 fcbReconfigureMessageBufferSelfSynchronization 

This function reconfigures the additional transmit message buffers for self start-up/synchronization. A 
reconfiguration is only allowed for message buffers which are already configured and if the Communication 
Controller is in its configuration state, fcStateConfig. The message buffer needs to be defined for a 
start-up/synchronization transmit frame. Therefore, it is mandatory to set the SyncFrameIndicator 
and StartupFrameIndicator to 1 and the CycleCounterFilter to 0.  

FcError fcbReconfigureMessageBufferSelfSynchronization( 
fcHandle hFlexCard, 
fcDword bufferId, 
fcMsgBufCfg cfg 

) 

Parameters 
hFlexCard 

[IN] Handle to a FlexCard 



 

 

Created by STAR ELECTRONICS GmbH & Co. KG   

Date created 2021-10-05 Date modified  2021-10-05 Page 180 of 250 
 

3-
00

0
9-

0
S

01
-D

0
3_

A
P

I 
D

oc
um

en
ta

ti
on

_D
2

V
5

-F
.d

oc
x 

 

bufferId 
[IN] The identifier of the message buffer which should be reconfigured. 

Cfg 
[IN] Message buffer configuration parameters. 

Return values 
If the function succeeds, the return value is 0. If the value is <> 0, use the functions described in the section 
Error Handling to get extended error information. 

See Also 
fcMsgBufCfg, fcMsgBufCfgTx, fcbConfigureMessageBufferSelfSynchronizatio, 
fcbGetCcMessageBufferSelfSynchronization, 
fcbResetCcMessageBuffersSelfSynchronization, fcbFRSetMsgBufCfgMode 

9.1.3 fcbReinitializeCcMessageBufferSelfSynchronization 

This function re-initializes the message buffer configuration of the self-start-up synchronization 
Communication Controller. After calling this function the Communication Controller does not send old 
payload data. Re-initialization of message buffers is only allowed if the Communication Controller is in 
configuration state. 

FcError fcbReinitializeCcMessageBufferSelfSynchronization( 
fcHandle hFlexCard 

) 

Parameters 
hFlexCard 

[IN] Handle to a FlexCard 

Return values 
If the function succeeds, the return value is 0. If the value is <> 0, use the functions described in the section 
Error Handling to get extended error information 

9.1.4 fcbGetCcMessageBufferSelfSynchronization 

This function reads a specific message buffer configuration of the additional message buffers for self start-
up/synchronization.  

FcError fcbGetCcMessageBufferSelfSynchronization( 
fcHandle hFlexCard, 
fcDword bufferId, 
fcMsgBufCfg* cfg 

) 

Parameters 
hFlexCard 

[IN] Handle to a FlexCard 
bufferId 

[IN] The identifier of the additional start-up/sync message buffer to be read 
cfg 

[OUT] The configuration parameters of the specified message buffer. 

Return values 
If the function succeeds, the return value is 0. If the value is <> 0, use the functions described in the section 
Error Handling to get extended error information. 



 

 

Created by STAR ELECTRONICS GmbH & Co. KG   

Date created 2021-10-05 Date modified  2021-10-05 Page 181 of 250 
 

3-
00

0
9-

0
S

01
-D

0
3_

A
P

I 
D

oc
um

en
ta

ti
on

_D
2

V
5

-F
.d

oc
x 

 

See Also 
fcMsgBufCfg, fcMsgBufCfgTx, fcbConfigureMessageBufferSelfSynchronization, 
fcbReconfigureMessageBufferSelfSynchronization, 
fcbResetCcMessageBuffersSelfSynchronization 

Example 
// Get all configured additional start-up/synchronization transmit  
// message buffers 
std::map<unsigned int, fcMsgBufCfg> Buffers; 
 
// valid buffer indexes are only 1 and 2 
for(unsigned int bufIdx = 1;bufIdx <=2; bufIdx++) 
{ 
  fcMsgBufCfg cfg; 
 
  // as long no error occurs we try to get each buffer 
  fcError e=fcbGetCcMessageBufferSelfSynchronization(m_hFlexCard,bufIdx,&cfg); 
  if (0 != e) 

continue; 
  
  //and add it to our list 
  Buffers[bufIdx] = cfg; 
} 

9.1.5 fcbResetCcMessageBuffersSelfSynchronization 

This function resets the additional start-up/synchronization message buffers. 

FcError fcbResetCcMessageBufferSelfSynchronization( 
fcHandle hFlexCard 

) 

Parameters 
hFlexCard 

[IN] Handle to a FlexCard 

Return values 
If the function succeeds, the return value is 0. If the value is <> 0, use the functions described in the section 
Error Handling to get extended error information. 

9.2 Transmit 

9.2.1 fcbTransmitSelfSynchronization 

This function writes a data frame into a self start-up/synchronization transmit buffer of the FlexCard. The 
function returns immediately and does not wait for the data frame to arrive on the bus. The frame should 
normally be transmitted in the next cycle. If the transmit acknowledgment is activated, an acknowledge 
packet is generated as soon as the frame has been transmitted. This function should only be called when 
the FlexCard is in normal active state or when all message buffer configurations have been done. When the 
user transmits several times new data with the same buffer ID in a very short time periode, it may happen 
that data is overwritten that was not transmitted yet. If you experience that behavior, wait for the TxAck for 
the data you wanted to send. 



 

 

Created by STAR ELECTRONICS GmbH & Co. KG   

Date created 2021-10-05 Date modified  2021-10-05 Page 182 of 250 
 

3-
00

0
9-

0
S

01
-D

0
3_

A
P

I 
D

oc
um

en
ta

ti
on

_D
2

V
5

-F
.d

oc
x 

 

FcError fcbTransmitSelfSynchronization( 
fcHandle hFlexCard,  
fcDword bufferId,  
fcWord payload[], 
fcByte payloadLength 

); 

Parameters 
hFlexCard 

[IN] Handle to a FlexCard 
bufferId 

[IN] The id of the additional start-up/synchronization message buffer used for the transmission 
payload 

The payload data to be transmitted 
payloadLength 

The size of the payload data (number of 2-byte words) 

Return values 
If the function succeeds, the return value is 0. If the value is <> 0, use the functions described in the section 
Error Handling to get extended error information. 

Remarks  
The payload data has to be organized as follows: if Data0 is the first byte to transmit and Data1 the second 
byte to transmit, then the high byte (Bit 8 – 15) of payload[0] contains Data1, the low byte (Bit 0-7) of 
payload[0] contains Data0, etc. 
 

Parameter payload payload[0] (Word 0) payload[1] ( Word 
1) 

… 

High byte Low byte High byte Low byte … 
FlexRay payload segment Data 1 Data 0 Data 3 Data 2 … 

Example 
fcWord payload[fcPayloadMaximum]; 
payload[0] = 0x0001; // Update your payload data 
 
fcError e = fcbTransmitSelfSynchronization(m_hFlexCard,bufferIdx, 
   payload,payloadLength); 



 

 

Created by STAR ELECTRONICS GmbH & Co. KG   

Date created 2021-10-05 Date modified  2021-10-05 Page 183 of 250 
 

3-
00

0
9-

0
S

01
-D

0
3_

A
P

I 
D

oc
um

en
ta

ti
on

_D
2

V
5

-F
.d

oc
x 

 

10 Trigger API 

This chapter shows how to set up the two FlexCard trigger lines. FlexCard Cyclone II (SE) and FlexCard 
USB-M have 2 unidirectional triggers. One IN and one OUT line. Via the IN trigger line it has the ability to 
receive trigger events and forward them to the user application. The two trigger lines of the FlexCard PMC, 
FlexCard PMC-II, FlexCard PXIe3, FlexCard PCIe3 may be configured as IN or OUT. To configure and 
activate this feature, use the following structures and functions. The trigger event data (trigger IN) is 
received as fcTriggerExInfoPacket with the fcbReceive function. 

The OUT trigger level depends on the FlexCard. Refer to the document Instructions for Use. It may be high 
or low active. The IN trigger does not detect the voltage level, but it detects either the rising or falling 
signal edge. This can be configured. 

The following table lists the supported triggers during asynchronous and synchronous FlexRay monitoring. 

Trigger Supported in 
Asynch-

Mode 

Supported in 
Synch-Mode 

Supported FlexCard 

fcTriggerIn OK OK FC Cyclone II (SE), FC USB-M 
fcTriggerInOnSWPulse OK OK FC Cyclone II (SE), FC USB-M 
fcTriggerInOnSWTimer OK OK FC Cyclone II (SE), FC USB-M 
fcTriggerOutOnPulse OK OK FC Cyclone II (SE), FC USB-M 
fcTriggerOutOnTimeStampChanged OK OK FC USB-M 
fcTriggerOutOnCycle - OK FC Cyclone II (SE), FC USB-M 
fcTriggerOutOnSlotChX - OK FC Cyclone II (SE), FC USB-M 
fcTriggerOutOnSlotInCycleChX - OK FC Cyclone II (SE), FC USB-M 
fcTriggerOutOnCycleStart - OK FC Cyclone II (SE), FC USB-M 
fcTriggerOutOnErrorDetected - OK FC Cyclone II (SE), FC USB-M 
fcTriggerOutOnErrorX - OK FC Cyclone II (SE), FC USB-M 
fcTriggerOutOnStartupCompleted - OK FC Cyclone II (SE), FC USB-M 
fcTriggerOutOnStartDynamicSegment - OK FC Cyclone II (SE), FC USB-M 
fcTriggerPMCIn OK OK FC PMC (II), FC PXIe3/PCIe3 
fcTriggerPMCOutOnPulse OK OK FC PMC (II), FC PXIe3/PCIe3 
fcTriggerPMCOutOnTimeStampChanged OK OK FC PMC (II), FC PXIe3/PCIe3 
fcTriggerPMCOutOnErrorDetected - OK FC PMC (II), FC PXIe3/PCIe3 
fcTriggerPMCOutOnStartupCompleted - OK FC PMC (II), FC PXIe3/PCIe3 
fcTriggerPMCOutOnCycleStart - OK FC PMC (II), FC PXIe3/PCIe3 

 

 

Information 

The IN trigger line of the FlexCard Cyclone II SE recognizes a trigger impuls only if it is longer than 
50 us. 

 

10.1 Enumerations 

10.1.1 fcTriggerConditionEx 

This enumeration defines the conditions available for a trigger configuration. It is used for the FlexCard 
Cyclone II (SE) and FlexCard USB-M. The conditions may be binary Ored. 

Typedef enum fcTriggerConditionEx 
{ 

fcTriggerIn     = 0x00000002, 
fcTriggerOutOnPulse    = 0x00000004, 
fcTriggerInOnSWPulse   = 0x00000008, 
fcTriggerInOnSWTimer   = 0x00000010, 



 

 

Created by STAR ELECTRONICS GmbH & Co. KG   

Date created 2021-10-05 Date modified  2021-10-05 Page 184 of 250 
 

3-
00

0
9-

0
S

01
-D

0
3_

A
P

I 
D

oc
um

en
ta

ti
on

_D
2

V
5

-F
.d

oc
x 

 

fcTriggerOutOnCycle    = 0x00000040, 
fcTriggerOutOnSlotChA   = 0x00000080, 
fcTriggerOutOnSlotChB   = 0x00000100, 
fcTriggerOutOnSlotInCycleChA  = 0x00000200, 
fcTriggerOutOnSlotInCycleChB  = 0x00000400, 
fcTriggerOutOnTimeStampChanged  = 0x00008000, 
fcTriggerOutOnCycleStart   = 0x00010000, 
fcTriggerOutOnErrorDetected  = 0x00020000, 
fcTriggerOutOnStartupCompleted  = 0x00040000, 
fcTriggerOutOnStartDynamicSegment = 0x00080000, 
fcTriggerOutOnErrorSFBM   = 0x00100000, 
fcTriggerOutOnErrorSFO   = 0x00200000, 
fcTriggerOutOnErrorCCF   = 0x00400000, 
fcTriggerOutOnErrorSBVA   = 0x00800000, 
fcTriggerOutOnErrorPERR   = 0x01000000, 
fcTriggerOutOnErrorEDA   = 0x02000000, 
fcTriggerOutOnErrorLTVA   = 0x04000000, 
fcTriggerOutOnErrorTABA   = 0x08000000, 
fcTriggerOutOnErrorEDB   = 0x10000000, 
fcTriggerOutOnErrorLTVB   = 0x20000000, 
fcTriggerOutOnErrorTABB   = 0x40000000, 
fcTriggerOutOnErrorSBVB   = 0x80000000, 
fcTriggerOutOnErrorAll   = 0xFFF00000, 

}fcTriggerConditionEx; 

Members 
fcTriggerIn 

IN: A trigger packet is generated as soon as the set edge (falling/rising) is detected on the input 
trigger line. 

FcTriggerOutOnPulse 
OUT: A signal is generated on the output trigger line as soon as the condition is set to the driver. 

FcTriggerInOnSWPulse 
IN: A trigger packet is generated as soon as the trigger function is called. 

FcTriggerInOnSWTimer 
IN: A trigger packet is generated by a set time interval. 

FcTriggerOutOnCycle 
OUT: A signal is generated on the output trigger line at each start of a set FlexRay cycle. 

FcTriggerOutOnSlotChA 
OUT: A signal is generated on the output trigger line at each start of a set FlexRay slot on channel A. 

fcTriggerOutOnSlotChB 
OUT: A signal is generated on the output trigger line at each start of a set FlexRay slot on channel B. 

fcTriggerOutOnSlotInCycleChA 
OUT: A signal is generated on the output trigger line at each start of a set slot in a set FlexRay cycle 
on channel A. 

fcTriggerOutOnSlotInCycleChB 
OUT: A signal is generated on the output trigger line at each start of a set slot in a set FlexRay cycle 
on channel B. 

fcTriggerOutOnTimeStampChanged 
OUT: A signal is generated on the output trigger line at each change of the internal FlexCard time 
stamp. 

FcTriggerOutOnCycleStart 
OUT: A signal is generated on the output trigger line at a FlexRay cycle start. 

FcTriggerOutOnErrorDetected 
OUT: A signal is generated on the output trigger line at a detected FlexRay error. 

FcTriggerOutOnStartupCompleted 
OUT: A signal is generated on the output trigger line at a completed FlexRay start-up. 

FcTriggerOutOnStartDynamicSegment 
OUT: A signal is generated on the output trigger line at the start of the FlexRay dynamic segment. 

FcTriggerOutOnErrorSFBM 
OUT: A signal is generated on the output trigger line at the FlexRay error SFBM (sync frame below 
minimum). 



 

 

Created by STAR ELECTRONICS GmbH & Co. KG   

Date created 2021-10-05 Date modified  2021-10-05 Page 185 of 250 
 

3-
00

0
9-

0
S

01
-D

0
3_

A
P

I 
D

oc
um

en
ta

ti
on

_D
2

V
5

-F
.d

oc
x 

 

FcTriggerOutOnErrorSFO 
OUT: A signal is generated on the output trigger line at the FlexRay error SFO (sync frame overflow). 

FcTriggerOutOnErrorCCF 
OUT: A signal is generated on the output trigger line at the FlexRay error CCF (clock correction 
failure). 

FcTriggerOutOnErrorSBVA 
OUT: A signal is generated on the output trigger line at the FlexRay error SBVA (slot boundary 
violation channel A). 

fcTriggerOutOnErrorPERR 
OUT: A signal is generated on the output trigger line at the FlexRay error PERR (parity error). 

FcTriggerOutOnErrorEDA 
OUT: A signal is generated on the output trigger line at the FlexRay error EDA (error detected on 
channel A). 

fcTriggerOutOnErrorLTVA 
OUT: A signal is generated on the output trigger line at the FlexRay error LTVA (latest transmit 
violation channel A). 

fcTriggerOutOnErrorTABA 
OUT: A signal is generated on the output trigger line at the FlexRay error TABA (transmission across 
boundary channel A). 

fcTriggerOutOnErrorEDB 
OUT: A signal is generated on the output trigger line at the FlexRay error EDB (error detected on 
channel B). 

fcTriggerOutOnErrorLTVB 
OUT: A signal is generated on the output trigger line at the FlexRay error LTVB (latest transmit 
violation channel B). 

fcTriggerOutOnErrorTABB 
OUT: A signal is generated on the output trigger line at the FlexRay error TABB (transmission across 
boundary channel B). 

fcTriggerOutOnErrorSBVB 
OUT: A signal is generated on the output trigger line at the FlexRay error SBVB (slot boundary 
violation channel B). 

fcTriggerOutOnErrorAll 
OUT: A signal is generated on the OUT trigger line at detected an error 

See Also 
fcbSetTrigger, fcTriggerConfigurationEx 

Remarks 
In the FlexRay monitoring mode DebugAsynchron only the conditions fcTriggerIn, 
fcTriggerOutOnPulse, fcTriggerInOnSWTimer, fcTriggerInOnSWPulse and 
fcTriggerOutOnTimeStampChanged can be used. 

10.1.2 fcTriggerConditionPMC  

This enumeration defines the conditions available for a trigger configuration of a FlexCard PMC (II). Please 
note that these conditions can not be OR-ed. 

Typedef enum fcTriggerConditionPMC 
{ 

fcTriggerPMCNone = 0x00000000, 
fcTriggerPMCIn = 0x00000100, 
fcTriggerPMCOutOnPulse = 0x00001000, 
fcTriggerPMCOutOnTimeStampChanged = 0x00002000, 
fcTriggerPMCOutOnErrorDetected = 0x00010000, 
fcTriggerPMCOutOnStartupCompleted = 0x00020000, 
fcTriggerPMCOutOnCycleStart = 0x00100000, 

} fcTriggerConditionPMC; 



 

 

Created by STAR ELECTRONICS GmbH & Co. KG   

Date created 2021-10-05 Date modified  2021-10-05 Page 186 of 250 
 

3-
00

0
9-

0
S

01
-D

0
3_

A
P

I 
D

oc
um

en
ta

ti
on

_D
2

V
5

-F
.d

oc
x 

 

Members 
fcTriggerPMCNone 

None. 
FcTriggerPMCIn  

Input trigger. When a trigger impulse is detected a fcTriggerExInfoPacket packet is generated 
FcTriggerPMCOutOnPulse 

Output trigger. Impulse is generated as soon as the condition is set to the driver  
FcTriggerPMCOutOnTimeStampChanged 

Output trigger. Impulse is generated if the internal FlexCard time stamp was changed  
FcTriggerPMCOutOnErrorDetected 

Output trigger. Impulse is generated if a FlexRay error was detected  
FcTriggerPMCOutOnStartupCompleted 

Output trigger. Impulse is generated when the FlexRay startup was completed 
FcTriggerPMCOutOnCycleStart 

Output trigger. Impulse is generated at a FlexRay cycle start 

See Also 
fcbSetTrigger, fcTriggerConditionEx 

Remarks 
In the FlexRay monitoring mode DebugAsynchron only the conditions fcTriggerPMCNone, 
fcTriggerPMCIn, fcTriggerPMCOutOnPulse and 
fcTriggerPMCOutOnTimeStampChanged can be used. 

10.2 Structures 

10.2.1 fcTriggerConfigurationEx  

This structure configures the triggers of the FlexCard. Using the parameter Condition the trigger is 
enabled. For Condition the enumeration fcTriggerConditionEx is used for FlexCard Cyclone II 
(SE) and FlexCard USB-M. To set more than one trigger condition the conditions available in 
fcTriggerConditionEx must be binary OR-ed. Setting Condition to zero resets all triggers. In 
case you add additional trigger conditions, they have to be binary OR-ed with the former ones. Otherwise 
the previous settings will be reset. 

When you use a FlexCard PMC, FlexCard PMC-II, FlexCard PXIe3, FlexCard PCIe3, use 
fcTriggerConditionPMC as Condition. The conditions cannot be OR-ed. If you do it 
nevertheless, none of the conditions are set and an error message is returned. Set the parameter 
TriggerLineToConfigure to either 1 or 2. Set the parameter TriggerGeneratingCC to the CC 
index you wish to use. 

Some conditions need additional parameters: 

The condition fcTriggerIn demands to set the parameter onEdge. 

The condition fcTriggerInOnSWTimer demands to set the parameter onTimePeriod. 

The condition fcTriggerOutOnCycle demands to set the parameter onCycle. 

The condition fcTriggerOutOnSlotChA demands to set the parameter onSlotChA. 

The condition fcTriggerOutOnSlotChB demands to set the parameter onSlotChB. 

The condition fcTriggerOutOnSlotInCycleChA demands to set the parameters onSlotChA and 
onCycle. 

The condition fcTriggerOutOnSlotInCycleChB demands to set the parameters onSlotChB and 
onCycle. 

The PMC conditions fcTriggerPMCOutOnErrorDetected, fcTriggerPMCOutOnCycleStart and 
fcTriggerPMCOutOnStartupCompleted demand to set the parameter TriggerGeneratingCC. 



 

 

Created by STAR ELECTRONICS GmbH & Co. KG   

Date created 2021-10-05 Date modified  2021-10-05 Page 187 of 250 
 

3-
00

0
9-

0
S

01
-D

0
3_

A
P

I 
D

oc
um

en
ta

ti
on

_D
2

V
5

-F
.d

oc
x 

 

Typedef struct fcTriggerConfigurationEx 
{ 
 fcDword Condition; 
 fcDword onEdge; 
 

// For FlexCard Cyclone II (SE) / FlexCard USB-M  
 fcDword onCycle; 
 fcDword onSlotChA; 
 fcDword onSlotChB; 
 fcDword onTimePeriod; 
 fcDword Reserved1[4]; 
 
 // For FlexCard PMC, FlexCard PMC-II, FlexCard PXIe3, FlexCard PCIe3: 
 fcDword TriggerLineToConfigure; 
 fcCC TriggerGeneratingCC; 
 fcDword Reserved2[4]; 
} fcTriggerConfigurationEx; 

Members 
Condition 

Set this parameter to 0 to reset all triggers. FlexCard Cyclone II (SE): Set it to an OR-ed combination 
of conditions available in fcTriggerConditionEx. 
FlexCard PMC, FlexCard PMC-II, FlexCard PXIe3, FlexCard PCIe3: Set it to 
fcTriggerConditionPMC. Conditions cannot be OR-ed. 

OnEdge 
This parameter must be set when the condition fcTriggerIn is chosen. 
Valid values are 0 = falling edge and 1 = rising edge. Setting the trigger edge for output triggers is 
NOT supported. 

OnCycle 
This parameter must be set when at least one of the conditions fcTriggerOutOnCycle, 
fcTriggerOutOnSlotInCycleChA and fcTriggerOutOnSlotInCycleChB are chosen. 
Valid values range from 0 to 63. 

OnSlotChA 
This parameter must be set when at least on of the conditions fcTriggerOutOnSlotChA or 
fcTriggerOutOnSlotInCycleChA are chosen. 
Valid values range from 1 to 2047. 

OnSlotChB 
This parameter must be set when at least one of the conditions fcTriggerOutOnSlotChB or 
fcTriggerOutOnSlotInCycleChB are chosen. 
Valid values range from 1 to 2047. 

OnTimePeriod 
This parameter is only used in timer mode. The unit is millisecond. On Windows, the minimum 
granularity is 16 ms. 

Reserved1[4] 
Reserved. 

TriggerLineToConfigure 
For FlexCard PMC, FlexCard PMC-II, FlexCard PXIe3, FlexCard PCIe3: 
This parameter sets the trigger line which should be configured. 
Trigger line 1 and 2 are on the front panel. See the document Instructions for Use. 
Trigger line 3 can be configured on FlexCard PMC-II. It is at the UserIo backplane on pin 16. Please 
make sure that the signals are within the defined range. See separate document “FlexCard PMC-II 
Trigger Extension Dio3”. Trigger line 3 is not available in every fpga image. If trigger line 3 is 
configured, but the feature is not available in the firmware, the error INVALID_PARAMETER is 
returned. 

TriggerGeneratingCC 
For FlexCard PMC, FlexCard PMC-II, FlexCard PXIe3, FlexCard PCIe3. This parameter must be set 
when CC dependent trigger conditions are set. Valid values range from fcCC1 to fcCC4  

Reserved2[4] 
Reserved. 



 

 

Created by STAR ELECTRONICS GmbH & Co. KG   

Date created 2021-10-05 Date modified  2021-10-05 Page 188 of 250 
 

3-
00

0
9-

0
S

01
-D

0
3_

A
P

I 
D

oc
um

en
ta

ti
on

_D
2

V
5

-F
.d

oc
x 

 

See Also 
fcbSetTrigger, fcTriggerConditionEx, fcTriggerConditionPMC 

10.3 fcbSetTrigger 

This function configures and starts/stops triggers. For further information, refer to the structure 
fcTriggerConfigurationEx. 

FcError fcbSetTrigger( 
fcHandle hFlexCard, 
fcTriggerConfigurationEx cfg 

) 

Parameters 
hFlexCard 

[IN] Handle to a FlexCard 
cfg 

[IN] The trigger configuration 

Return values 
If the function succeeds, the return value is 0. If the value is <> 0, use the functions described in the section 
Error Handling to get extended error information. 

See Also 
fcTriggerConfigurationEx, fcTriggerConditionEx 

Example for FlexCard Cyclone II (SE) or FlexCard USB-M 
// Generate a pulse at the beginning of a detected FlexRay error and on 
// FlexRay cycle 3 
fcTriggerConfigurationEx triggerCfg; 
memset(&triggerCfg, 0, sizeof(fcTriggerConfigurationEx)); 
triggerCfg.Condition = 0; 
triggerCfg.Condition |= (fcDword)fcTriggerOutOnErrorDetected; 
triggerCfg.Condition |= (fcDword)fcTriggerOutOnCycle; 
triggerCfg.onCycle = 3; 
// Generate a trigger packet all 1000 milliseconds 
triggerCfg.Condition |= (fcDword)fcTriggerInOnSWTimer;  
triggerCfg.onTimePeriod = 1000;  
 
fcError e = fcbSetTrigger(hFlexCard,triggerCfg); 

Example for FlexCard PMC (II) 
// Generate a pulse on trigger line 1 when the Communication Controller 2 
// completed its FlexRay start-up 
fcTriggerConfigurationEx triggerCfg; 
memset(&triggerCfg, 0, sizeof(fcTriggerConfigurationEx)); 
triggerCfg.Condition = fcTriggerPMCOutOnStartupCompleted; 
triggerCfg.TriggerLineToConfigure = 1; 
triggerCfg.TriggerGeneratingCC = fcCC2; 
 
fcError e = fcbSetTrigger(hFlexCard,triggerCfg); 
 
// Generate a trigger packet when a pulse on trigger line 2 is detected 
triggerCfg.Condition = fcTriggerPMCIn; 
triggerCfg.TriggerLineToConfigure = 2; 
 
e = fcbSetTrigger(hFlexCard,triggerCfg); 

 



 

 

Created by STAR ELECTRONICS GmbH & Co. KG   

Date created 2021-10-05 Date modified  2021-10-05 Page 189 of 250 
 

3-
00

0
9-

0
S

01
-D

0
3_

A
P

I 
D

oc
um

en
ta

ti
on

_D
2

V
5

-F
.d

oc
x 

 

11 Termination API 

This chapter shows how to configure the on-board termination of the FlexCard PMC and FlexCard PMC-II. 

11.1 Enumerations 

11.1.1 fcBusChannel 

This enumeration defines the bus channels available on the card. 

Typedef enum fcBusChannel 
{ 

fcBusChannel1 = 1, 
fcBusChannel2 = 2, 
fcBusChannel3 = 3, 
fcBusChannel4 = 4, 
fcBusChannel5 = 5, 
fcBusChannel6 = 6, 
fcBusChannel7 = 7, 
fcBusChannel8 = 8, 

} fcBusChannel; 

Members 
fcBusChannel1 

Identifies bus channel 1. 
FcBusChannel2 

Identifies bus channel 2. 
FcBusChannel3 

Identifies bus channel 3. 
FcBusChannel4 

Identifies bus channel 4. 
FcBusChannel5 

Identifies bus channel 5. 
FcBusChannel6 

Identifies bus channel 6. 
FcBusChannel7 

Identifies bus channel 7. 
FcBusChannel8 

Identifies bus channel 8. 

See Also 
fcbSetBusTerminationCc, fcbGetBusTerminationCc, fcbSetBusTermination, 
fcbGetBusTermination 

11.2 fcbSetBusTerminationCc 

This function sets the bus termination individually for each Communication Controller channel. 



 

 

Created by STAR ELECTRONICS GmbH & Co. KG   

Date created 2021-10-05 Date modified  2021-10-05 Page 190 of 250 
 

3-
00

0
9-

0
S

01
-D

0
3_

A
P

I 
D

oc
um

en
ta

ti
on

_D
2

V
5

-F
.d

oc
x 

 

FcError fcbSetBusTerminationCc( 
fcHandle hFlexCard, 
fcBusType BusType, 
fcCC CC, 
fcChannel Channel 
fcBool bTermination 

) 

Parameters 
hFlexCard 

[IN] Handle to a FlexCard 
BusType 

[IN] The bus type termination. 
CC 

[IN] Index of the bus type Communication Controller. 
Channel 

[IN] FlexRay channel(s) that shall be terminated. This parameter needs only to be set for 
fcBusTypeFlexRay. 

BTermination 
[IN] Set the value <> 0 to enable the bus termination. Set the value 0 to disable the bus termination. 

Return values 
If the function succeeds, the return value is 0. If the value is <> 0, use the functions described in the section 
Error Handling to get extended error information. 

 
Remarks 

The termination will not be switched off by the driver automatically if the application closes the device or the 
driver will be unloaded. So, the bus will not be disturbed by termination loss in case the user application 
fails. 

See Also 
fcbGetBusTerminationCc 

 

 

Information 

This function is initially supported by FlexCard API version S6V1-F. 

 

11.3 fcbGetBusTerminationCc 

This function reads the bus termination individually for each Communication Controller channel. 

FcError fcbGetBusTerminationCc( 
fcHandle hFlexCard, 
fcBusType BusType, 
fcCC CC, 
fcChannel Channel 
fcBool* pbTermination 

) 

Parameters 
hFlexCard 

[IN] Handle to a FlexCard 
BusType 

[IN] The bus type termination. 
CC 

[IN] Index of the bus type Communication Controller. 



 

 

Created by STAR ELECTRONICS GmbH & Co. KG   

Date created 2021-10-05 Date modified  2021-10-05 Page 191 of 250 
 

3-
00

0
9-

0
S

01
-D

0
3_

A
P

I 
D

oc
um

en
ta

ti
on

_D
2

V
5

-F
.d

oc
x 

 

Channel 
[IN] States the FlexRay channel(s) for which the termination status is read. This parameter needs 
only be set for fcBusTypeFlexRay. 

PbTermination 
[OUT] The current bus termination. The value 0 indicates a disabled termination. A value <> 0 indicates 
an enabled termination. 

Return values 
If the function succeeds, the return value is 0. If the value is <> 0, use the functions described in the section 
Error Handling to get extended error information. 

See Also 
fcbSetBusTerminationCc 

 

 

Information 

This function is initially supported by FlexCard API version S6V1-F. 

 

11.4 fcbSetBusTermination 

This function sets the bus termination individually for each hardware bus channel. 

FcError fcbSetBusTermination( 
  fcHandle hFlexCard, 
  fcBusChannel BusChannel, 

fcBusType BusType, 
fcBool bTermination 

) 

Parameters 
hFlexCard 

[IN] Handle to a FlexCard 
BusChannel 

[IN] The bus channel describes the channel at which the termination should be switched on or off. 
BusType 

[IN] The bus type describes which bus protocol/transceiver is used for the channel. Different bus 
protocols/transceivers demand different bus terminations. 

BTermination 
[IN] This parameter enables or disables the bus termination  

Return values 
If the function succeeds, the return value is 0. If the value is <> 0, use the functions described in the section 
Error Handling to get extended error information. 

See Also 
fcbGetBusTermination 



 

 

Created by STAR ELECTRONICS GmbH & Co. KG   

Date created 2021-10-05 Date modified  2021-10-05 Page 192 of 250 
 

3-
00

0
9-

0
S

01
-D

0
3_

A
P

I 
D

oc
um

en
ta

ti
on

_D
2

V
5

-F
.d

oc
x 

 

Example 
fcBusChannel busChannel = fcBusChannel3; 
fcBusType busType = fcBusTypeFlexRay; 
bool bTerm = true; // enable termination 
 
// set FlexRay termination on bus channel 3 
fcError e = fcbSetBusTermination(m_hFlexCard,busChannel,busType,bTerm); 

Remarks 
The termination will not be switched off by the driver automatically if the application closes the device or the 
driver will be unloaded. So, the bus will not be disturbed by termination loss in case the user application 
fails. 
The bus channels for a FlexCard PMC (II) are named channel1 to channel 8 as shown in the figures below. 
Please note that the bus type (FlexRay or CAN) of channel 3 and 4 for a FlexCard PMC/PCI need to be set 
by dip switches as described in the FlexCard PMC (II) instructions for use. 
 

 
Figure 13: FlexCard PMC front panel 

 

 
Figure 14: FlexCard PMC-II front panel 

11.5 fcbGetBusTermination 

This function reads the current bus termination individually for each hardware bus channel. 

FcError fcbGetBusTermination( 
 fcHandle hFlexCard, 
 fcBusChannel BusChannel, 

fcBusType BusType, 
fcBool* pbTermination 

) 

Parameters 
hFlexCard 

[IN] Handle to a FlexCard 
BusChannel 

[IN] The bus channel of the termination. 



 

 

Created by STAR ELECTRONICS GmbH & Co. KG   

Date created 2021-10-05 Date modified  2021-10-05 Page 193 of 250 
 

3-
00

0
9-

0
S

01
-D

0
3_

A
P

I 
D

oc
um

en
ta

ti
on

_D
2

V
5

-F
.d

oc
x 

 

BusType 
[IN] The bus type describes which bus termination type has be to be checked. Currently only FlexRay 
bus terminations are available. 

PbTermination 
[OUT] The current bus termination. The value 0 indicates a disabled termination. A value <> 0 
indicates an enabled termination. The caller must provide memory for this parameter. 

Return values 
If the function succeeds, the return value is 0. If the value is <> 0, use the functions described in the section 
Error Handling to get extended error information. 

See Also 
fcbSetBusTermination 



 

 

Created by STAR ELECTRONICS GmbH & Co. KG   

Date created 2021-10-05 Date modified  2021-10-05 Page 194 of 250 
 

3-
00

0
9-

0
S

01
-D

0
3_

A
P

I 
D

oc
um

en
ta

ti
on

_D
2

V
5

-F
.d

oc
x 

 

12 Firmware API 

This chapter shows how to get information about the firmware of a FlexCard and switch to another 
firmware slot. The functions only work on FlexCard PMC-II and FlexCard USB-M. The FlexCard USB-M offers 
2 firmware slots while the FlexCard PMC-II offers 8. 

12.1 Structures 

12.1.1 fcFWInfo 

This struct defines the information that is read from the hardware. Only used for the FlexCard PMC-II 
application firmware images. The information is read with fcbFWGetImageInfo. 

Typedef struct fcFWInfo 
{ 
 fcNumberCC NumberOfCCs; 
 fcVersionNumber FwVersion; 
 fcDword bIsActive : 1; 
 fcDword Reserved[3]; 
} fcFWInfo; 

Members 
NumberOfCCs 

Contains the number of available CCs that are supported by the firmware. Note that the CCs only work 
if they are licensed. 

FwVersion 
Contains the version number of the firmware. 

bIsActive 
Shows whether the stated firmware index is currently running on the FlexCard PMC-II. 

Reserved 
Data is reserved for future use. 

See Also 
fcbFWGetImageInfo, fcNumberCC, fcVersionNumber 

 

 

Information 

This function is initially supported by FlexCard API version S6V1-F. 

 

12.2 fcbFWGetImageInfo 

This function reads information about a firmware slot. If supported by the FlexCard, it has a number of 
firmware slots and each slot can hold a firmware (also called user image). A user image can be activated by 
fcbFWSelectImage. The firmware slot update or activation on a FlexCard PMC-II take effect after a 
complete shut down of the PC. On a FlexCard USB-M, the changes take effect after reconnecting it. 
Whether an image slot is active at the moment can be checked with the flag bIsActive in the struct 
fcFWInfo. 

 



 

 

Created by STAR ELECTRONICS GmbH & Co. KG   

Date created 2021-10-05 Date modified  2021-10-05 Page 195 of 250 
 

3-
00

0
9-

0
S

01
-D

0
3_

A
P

I 
D

oc
um

en
ta

ti
on

_D
2

V
5

-F
.d

oc
x 

 

FcError fcbFWGetImageInfo ( 
fcHandle hFlexCard, 

 fcDword index, 
 fcFWInfo* pFWInfo 
) 

Parameters 
hFlexCard 

[IN] Handle to a FlexCard 
index 

[IN] The firmware slot whose information should be read. 
PFWInfo 

[OUT] Pointer to the image information struct. 

Return values 
If the function succeeds, the return value is 0. If the value is <> 0, use the functions described in the section 
Error Handling to get extended error information. 

See Also 
fcFWInfo, fcbFWSelectImage 

 

 

Information 

This function is initially supported by FlexCard API version S6V1-F. 

 

12.3 fcbFWSelectImage 

This function selects a firmware slot. If supported by the FlexCard, it has a number of firmware slots and 
each slot can hold a firmware (also called user image). The firmware slot update or activation on a FlexCard 
PMC-II takes effect after a complete shut down of the PC. On a FlexCard USB-M, the changes take effect 
after reconnecting it. Information about an image slot can be read with fcbFWGetImageInfo. 

FcError fcbFWSelectImage( 
fcHandle hFlexCard, 

 fcDword index 
) 

Parameters 
hFlexCard 

[IN] Handle to a FlexCard 
index 

[IN] The firmware slot that should be activated. 

Return values 
If the function succeeds, the return value is 0. If the value is <> 0, use the functions described in the section 
Error Handling to get extended error information. 

See Also 
fcbFWGetImageInfo 

 

 

Information 

This function is initially supported by FlexCard API version S6V1-F. 

 



 

 

Created by STAR ELECTRONICS GmbH & Co. KG   

Date created 2021-10-05 Date modified  2021-10-05 Page 196 of 250 
 

3-
00

0
9-

0
S

01
-D

0
3_

A
P

I 
D

oc
um

en
ta

ti
on

_D
2

V
5

-F
.d

oc
x 

 

13 Additional Linux API 

There are additional functions available in the FlexCard Linux driver. 

 

Information 

This chapter refers to the new FlexCard Linux driver! 

For the old FlexCard Linux driver (S5V3), please refer to the API Documentation for S5V3. 
 

13.1 Integration 

For a detailed description of the installation process, please refer to the text file Read_Me.txt which is 
included in the tar.gz archive. 

To use the additional Linux API, please include the header file fcBaseLinux.h in your application. 

After a successful installation please check the correct device initialization with cat /proc/flexcard for the 
FlexCard PMC-2 or with cat /proc/flexcard_ng for the FlexCard PXIe3/PCIe3. 

 

Information 

For the FlexCard PMC-2 use the driver flexcard and library libfcBase.so. 

For the FlexCard PXIe3 and FlexCard PCIe3 use the driver flexcard_ng and library 
libfcBase_ng.so. 

13.2 Event 

13.2.1 fcbSetEventHandleSemaphore 

This function registers an event handle (as semaphore) for a specific notification type. HEvent must be an 
unnamed POSIX semaphore from type (sem_t). 

fcError fcbSetEventHandleSemaphore( 
fcHandle hFlexCard, 
fcCC CC, 
fcHandle hEvent, 
fcNotificationType type 

) 

Parameters 
hFlexCard 

[IN] Handle to a FlexCard 
CC 

[IN] Communication controller index 
hEvent 

[IN] Event handle to be registered to signal when a new cycle starts, or a timer interval has elapsed 
depending on the given type. 

Type 
[IN] The notification type for which the event must be registered. 

Return values 
If the function succeeds, the return value is 0. If the value is <> 0, use the functions described in the section 
Error Handling to get extended error information. 

See Also 
fcCC, fcNotificationType 



 

 

Created by STAR ELECTRONICS GmbH & Co. KG   

Date created 2021-10-05 Date modified  2021-10-05 Page 197 of 250 
 

3-
00

0
9-

0
S

01
-D

0
3_

A
P

I 
D

oc
um

en
ta

ti
on

_D
2

V
5

-F
.d

oc
x 

 

Remarks 
The table below gives an overview of the fcNotificationType which are CC specific and which is not. 

CC specific fcNotificationType CC global fcNotificationType 
fcNotificationTypeFRCycleStarted fcNotificationTypeTimer 
fcNotificationTypeFRWakeup  
fcNotificationTypeFRCcTimer  

 



 

 

Created by STAR ELECTRONICS GmbH & Co. KG   

Date created 2021-10-05 Date modified  2021-10-05 Page 198 of 250 
 

3-
00

0
9-

0
S

01
-D

0
3_

A
P

I 
D

oc
um

en
ta

ti
on

_D
2

V
5

-F
.d

oc
x 

 

14 Additional Xenomai API 

There is a difference in the event handling between the FlexCard Xenomai driver and the other drivers for 
the FlexCard products. Instead of fcbSetEventHandleV2 function, the fcbWaitForEventV2 function 
should be used. 

Please note that if the fcbOpen call took place in non-real-time context, fcbClose must be issued within 
non-real-time as well. Otherwise, the call to fcbClose will fail. 

 

 CAUTION 

The FlexCard Xenomai driver version S6V5-F does not support the FlexCard Cyclone II (SE) 
officially. 

Please do not use these cards with enabled device interrupts. This may lead to system freeze. 

14.1 Integration 

For a detailed description of the installation process, please refer to the text file Read_Me.txt which is 
included in the zip archive. 

After a successful installation please check the correct device with ‘cat/proc/xeno_flexcard’. All installed 
devices must be shown with versions and irq info. Please compare the irq info with used irqs 
(cat/proc/interrupts). Make sure no non real time device shares an irq with a FlexCard. 

To use the additional Xenomai API, please include the header file fcBaseXENOMAI.h in your application. 

14.2 Structures 

14.2.1 fcFROffsetSynchronization 

This structure describes the configuration of a FlexRay offset synchronization. 

Typedef struct fcFROffsetSynchronization 
{ 
    fcBool activate; 
    fcCC masterCc; 
    fcCC slaveCc; 
    fcBool relative; 
    fcDword cycleOffset; 
    fcDword macrotickOffset; 
    fcBool resync; 
    fcDword resyncMacrotickOffset; 
    fcDword reserved[6]; 
} fcFROffsetSynchronization; 

Members 
activate 

Activate the firmware offset synchronization between a master and a slave FlexRay network. 
MasterCc 

The master CC to which the slave will be synchronized with a precise time delay. Currently must be 
fcCC1! 

SlaveCc 
The slave CC which follows the master with a precise time delay. Currently must be fcCC2! 

Relative 
When the bit relative is activated, the firmware synchronizes the master and the slave CC but 
disregards the cycle number. 

CycleOffset 
The cycle offset value. 

MacrotickOffset 
The macrotick offset value. 



 

 

Created by STAR ELECTRONICS GmbH & Co. KG   

Date created 2021-10-05 Date modified  2021-10-05 Page 199 of 250 
 

3-
00

0
9-

0
S

01
-D

0
3_

A
P

I 
D

oc
um

en
ta

ti
on

_D
2

V
5

-F
.d

oc
x 

 

Resync 
When the bit resync is activated, the firmware stops to establish an offset synchronization after a 
certain amount of macroticks passed. This duration is defined with the variable 
resyncMacrotickOffset. The application has to call fcbFRMonitoringStop and then 
fcbFRMonitoringStart in order to retry the offset synchronization. This is useful when the target and 
actual value are far apart, and the firmware would take very long to bring them together. 

ResyncMacrotickOffset 
Value in macroticks in which the firmware tries to establish an offset synchronization. 

Reserved[6] 
Data is reserved for future use. 

14.3 Event 

14.3.1 fcbWaitForEventV2 

This function makes a safe real time I/O-Control that blocks the user process in kernel-space, until an 
event of the given type occurs, or the event does not appear within the specified amount of time. The 
driver’s kernel interrupt service routine then unblocks, and the program routine continues. You don’t need 
to set a handle with fcbSetEventHandle (Obsolete) or fcbSetEventHandleV2. 

FcError fcbWaitForEventV2( 
fcHandle hFlexCard, 
fcCC CC, 
fcNotificationType type, 
fcDword nTimeout 

) 

Parameters 
hFlexCard 

[IN] Handle to a FlexCard 
CC 

[IN] Communication controller index 
type 

[IN] The notification type for which event has to be waited for. 
NTimeout 

[IN] The maximum amount of time in usec to wait for the event. 

Return values 
If the function succeeds, the return value is 0. If the value is <> 0, use the functions described in the section 
Error Handling to get extended error information. 

See Also 
fcCC, fcNotificationType 

Remarks 
The table below gives an overview of the fcNotificationType which are CC specific and which is not. 

CC specific fcNotificationType CC global fcNotificationType 
fcNotificationTypeFRCycleStarted fcNotificationTypeTimer 
fcNotificationTypeFRWakeup  
fcNotificationTypeFRCcTimer  

14.4 Initialization 

14.4.1 fcbFRSetOffsetSynchronization 

This function synchronizes two FlexRay networks with a defined time delay. The master always comes first, 
and the slave follows. This feature may be used to route frames from the master to the slave CC in the 
same FlexRay cycle number. Make sure that the time offset is big enough to route the frames. However, 



 

 

Created by STAR ELECTRONICS GmbH & Co. KG   

Date created 2021-10-05 Date modified  2021-10-05 Page 200 of 250 
 

3-
00

0
9-

0
S

01
-D

0
3_

A
P

I 
D

oc
um

en
ta

ti
on

_D
2

V
5

-F
.d

oc
x 

 

when you make the time offset too large, routing frames the other way (from the slave to the master) will 
lead to a bigger time offset. The user must make a trade-off here. 

The following figure shows a FlexRay offset synchronization with an in-cycle offset of half a cycle and a 
cycle offset of 0. This makes it possible to receive ID 3, manipulate the value and send it on the slave 
network in the same cycle number. 

 
Figure 15: Example for a FlexRay offset synchronization 

The user must set the parameters pExternOffsetCorrection and pExternRateCorrection via 
fcbFRSetCcConfigurationChi or fcbFRSetCcConfiguration. These parameters control how big an external 
offset correction is. Valid values for these parameters are 0 to 7 microticks. 

VExternOffsetControl and vExternRateControl can have three values: 

• 0 (no offset control) 

• 2 (add the correction value) 

• 3 (substract the correction value) 

The user must set those values to 0. The FlexCard sets these values. This way it controls the time offset 
between the master and the slave. 

POffsetCorrectionOut and pRateCorrectionOut hold the maximum allowed offset correction values. 

• pOffsetCorrectionOut: 5 to 15266 microticks 

• pRateCorrectionOut: 2 to 1923 microticks 

Those parameters should be set high enough. 

Example: pExternOffsetCorrection is set to 7 microticks. When the defined time offset between the master 
and the slave is not reached yet, the FlexCard control adds 7 microticks offset each cycle. 

Calling fcbFRSetOffsetSynchronization is only allowed when the CCs are not running. The offset 
synchronization is only possible if fcMonitoringNormal is used on both CCs and the slave CC sends a 
startup/sync frame. 

When the offset synchronization is activated, the startup/sync frame from the slave CC should not come 
immediately after a different sync frame. E.g., when a communication partner uses frame Id 5 as sync 
frame, the slave CC should use frame Id 7 or higher with startup/sync bit. 

Please note that a firmware with FlexRay offset synchronization is required. 

This function is experimental. 

FcError fcbFRSetOffsetSynchronization( 
  fcHandle hFlexCard, 
  fcFROffsetSynchronization offsetSync 
) 

Parameters 
hFlexCard 

[IN] Handle to a FlexCard 



 

 

Created by STAR ELECTRONICS GmbH & Co. KG   

Date created 2021-10-05 Date modified  2021-10-05 Page 201 of 250 
 

3-
00

0
9-

0
S

01
-D

0
3_

A
P

I 
D

oc
um

en
ta

ti
on

_D
2

V
5

-F
.d

oc
x 

 

offsetSync  
 [IN] Configures the offset synchronization. 

Return values 
If the function succeeds, the return value is 0. If the value is <> 0, use the functions described in the section 
Error Handling to get extended error information. 

Example 
// precondition: valid flexcard handle exists 
 
// add code here to call fcbFRSetCcConfiguration or 
// fcbFRSetCcConfigurationChi for fcCC1 and fcCC2. 
 
// add code here to configure the FlexRay message buffers 
 
fcFROffsetSynchronization offsetSync; 
memset(&offsetSync, 0, sizeof(offsetSync)); 
 
offsetSync.activate = 1; 
offsetSync.masterCc = fcCC1; 
offsetSync.slaveCc = fcCC2; 
offsetSync.relative = 0; 
offsetSync.cycleOffset = 3; 
offsetSync.macrotickOffset = 20; 
offsetSync.resync = 0; 
offsetSync.resyncMacrotickOffset = 0; 
 
// create a time offset so that the slave CC runs 3 
// cycles and 20 macroticks later than the master CC. 
fcError e = fcbFRSetOffsetSynchronization(hFlexCard, offsetSync); 
if (0 == e)  
{ 
 // add code here to start monitoring on fcCC1 and fcCC2 
}  
else 
{ 
  // error handling … 
} 

 

14.5 Obsolete 

14.5.1 fcbWaitForEvent (Obsolete) 

 

Information 

This function is obsolete. Please use fcbWaitForEventV2 instead. 

 
 

This function makes a safe real time I/O-Control that blocks the user process in kernel-space, until an 
event of the given type occurs, or the event does not appear within the specified amount of time. The 
driver’s kernel interrupt service routine then unblocks, and the program routine continues. You don’t need 
to set a handle with fcbSetEventHandle (Obsolete). 



 

 

Created by STAR ELECTRONICS GmbH & Co. KG   

Date created 2021-10-05 Date modified  2021-10-05 Page 202 of 250 
 

3-
00

0
9-

0
S

01
-D

0
3_

A
P

I 
D

oc
um

en
ta

ti
on

_D
2

V
5

-F
.d

oc
x 

 

FcError fcbWaitForEvent( 
fcHandle hFlexCard, 
fcNotificationType hEvent, 
fcDword nTimeout 

) 

Parameters 
hFlexCard 

[IN] Handle to a FlexCard 
hEvent 

[IN] The notification type for which event must be waited for. 
NTimeout 

[IN] The maximum amount of time in usec to wait for the event. 

Return values 
If the function succeeds, the return value is 0. If the value is <> 0, use the functions described in the section 
Error Handling to get extended error information. 

See Also 
fcNotificationType 

Remarks 
The table below gives an overview of the fcNotificationType which are CC specific and which is not. To use 
the CC specific fcNotificationType, the CC index has to be set. 

CC specific fcNotificationType CC global fcNotificationType 
fcNotificationTypeCycleStarted fcNotificationTypeTimer 
fcNotificationTypeWakeup  

 



 

 

Created by STAR ELECTRONICS GmbH & Co. KG   

Date created 2021-10-05 Date modified  2021-10-05 Page 203 of 250 
 

3-
00

0
9-

0
S

01
-D

0
3_

A
P

I 
D

oc
um

en
ta

ti
on

_D
2

V
5

-F
.d

oc
x 

 

15 Additional VxWorks API 

The VxWorks driver provides additional functionality for the FlexCard PMC. Please note that there are also 
some fcBase API functions and type definitions which were changed or are not supported by the VxWorks 
driver. The VxWorks driver only supports multiple CC indexes by using the function fcbSetCcIndex. The 
FRxxx functions are not supported. 

To use the driver in a user application, the header files fcPmcDrv.h, fcBaseTypesVxWorks.h and 
fcbBaseVxWorks.h must be included in that order. 

15.1 Integration 

For a detailed description of the installation process, please refer to the text file Read_Me.txt which is 
included in the zip archive. 

 

Information 

The FlexCard VxWorks driver version S1V2-F supports only the FlexCard PMC firmware version 
S1V2-F. 

The FlexCard VxWorks driver version S2V1-F supports only the FlexCard PMC firmware version 
S5V2-F with 2 FR controllers. 

Other driver and versions are not compatible. 

15.1.1 fcDrvInit 

This function initializes the FlexCard PMC VxWorks driver. 

STATUS fcDrvInit() 

Return values 
If the function succeeds, the return value is (OK). If the value is (ERROR) the driver could not be initialized. 

See Also 
fcDrvExit 

15.1.2 fcDrvExit 

This function finalizes the FlexCard PMC VxWorks driver. 

STATUS fcDrvExit() 

Return values 
If the function succeeds, the return value is (OK). If the value is (ERROR) the driver could not be finalized. 

See Also 
fcDrvInit 

15.2 Restrictions / Changes 

15.2.1 Not Supported Type Definitions 

The VxWorks driver does not support the following type definitions: 

fcFreeMemory 
fcTriggerCondition (Obsolete) 
fcTriggerType (Obsolete) 



 

 

Created by STAR ELECTRONICS GmbH & Co. KG   

Date created 2021-10-05 Date modified  2021-10-05 Page 204 of 250 
 

3-
00

0
9-

0
S

01
-D

0
3_

A
P

I 
D

oc
um

en
ta

ti
on

_D
2

V
5

-F
.d

oc
x 

 

fcTriggerMode (Obsolete) 
fcTriggerCfgHardware (Obsolete) 
fcTriggerCfgSoftware (Obsolete) 
fcTriggerCfg (Obsolete) 
fcTriggerInfoPacket (Obsolete) 
fcTriggerConditionEx 

15.2.2 Changed Type Definitions 

15.2.2.1 fcVersion 
This structure provides version information about the FlexCard hardware and software components. 

Typedef struct fcVersion 
{ 
 fcVersionNumber    DeviceDriver; 
 fcVersionNumber    Firmware; 
 fcVersionNumber    Hardware; 
 fcCCType           CCType; 
 fcVersionNumber    CC; 
 fcVersionNumber    BusGuardian; 
 fcVersionNumber    Protocol; 
 fcDword            Serial; 
 fcFlexCardDeviceId DeviceId; 
 fcDword            Reserved[3]; 
} fcVersion; 

Members 
DeviceDriver 

Device driver version 
Firmware 

Firmware (gateway software) version 
Hardware 

FlexCard hardware version 
CCType 

Communication controller type 
CC 

Communication controller module version 
BusGuardian 

Bus Guardian version 
Protocol 

FlexRay Protocol version 
Serial 

FlexCard serial number. A zero value indicates a non-valid FlexCard serial number. 
DeviceId 

Device identifier to detect the FlexCard type (FlexCard Cyclone II, FlexCard Cyclone II SE or FlexCard 
PMC) 

Reserved[3] 
Reserved for internal purpose 

See Also 
fcInfo, fcbGetEnumFlexCards (Obsolete), fcFlexCardDeviceId 

15.2.2.2 fcTriggerConfigurationEx 
This structure is used for the configuration of a trigger. By using the parameter Condition several 
triggers can be enabled. The trigger conditions of the FlexCard PMC are defined in the enumeration 
fcTriggerConditionPMC. The conditions cannot be combined (OR-ed). If it is done, none of the 
conditions will be set and an error message will be returned. 

The conditions fcTriggerPMCOutOnErrorDetected, fcTriggerPMCOutOnCycleStart and 
fcTriggerPMCOutOnStartupCompleted demand to set the parameter 
TriggerGeneratingCC. Please note the FlexCard trigger lines are not hard defined as IN or OUT 



 

 

Created by STAR ELECTRONICS GmbH & Co. KG   

Date created 2021-10-05 Date modified  2021-10-05 Page 205 of 250 
 

3-
00

0
9-

0
S

01
-D

0
3_

A
P

I 
D

oc
um

en
ta

ti
on

_D
2

V
5

-F
.d

oc
x 

 

trigger lines. Therefore, a valid value has always to be set for the parameter 
TriggerLineToConfigure. 

Typedef struct fcTriggerConfigurationEx 
{ 
 fcDword Condition; 
 fcDword onEdge; 
 fcDword TriggerLineToConfigure; 
 fcCC    TriggerGeneratingCC; 
 fcDword Reserved[4]; 
} fcTriggerConfigurationEx; 

Members 
Condition 

This parameter can either be set to 0 (fcTriggerPMCNone) to reset the trigger or to any 
condition available in fcTriggerConditionPMC. 

OnEdge 
This parameter must be set when the condition fcTriggerPMCIn is chosen. Valid values are 0 = 
falling edge and 1 = rising edge. 

TriggerLineToConfigure 
This parameter sets the trigger line which should be configured. Valid values range from 1 to 2. 

TriggerGeneratingCC 
This parameter has to be set when a CC dependent trigger condition was set. Valid values range 
from fcCC1 to fcCC2. 

Reserved[4] 
Reserved Dwords for possible later use. 

See Also 
fcbSetTrigger, fcTriggerConditionPMC 

15.2.2.3 fcNotificationType 
This enumeration defines different notification types. These types are used in the functions 
fcbSetEventHandle.and fcbSetNotificationTypeCount to specify on which kind of event the 
application has to be notified. 

Typedef enum fcNotificationType 
{ 

fcNotificationTypeCycleStarted      = 1, 
fcNotificationTypeTimer             = 2, 
fcNotificationTypeWakeup            = 3, 
fcNotificationTypeRxCount           = 4, 
fcNotificationTypeTxCount           = 5, 
fcNotificationTypeInfoCount         = 6, 
fcNotificationTypeErrorCount        = 7, 
fcNotificationTypeStatusCount       = 8, 
fcNotificationTypeTriggerCount      = 9, 
fcNotificationTypeNMVCount          = 10, 
fcNotificationTypeNotificationCount = 11, 
fcNotificationTypeCcTimer           = 12, 

} fcNotificationType; 

Members 
fcNotificationTypeCycleStarted 

Used to notify that a new cycle has started, and that probably new data has been received. 
FcNotificationTypeTimer 

Used to notify that the timer interval has elapsed. This notification requires the internal timer of the 
FlexCard to be enabled (See fcbSetTimer). 

FcNotificationTypeWakeup 
Used to notify that one of the transceivers has received a wake-up event (only if one of the transceivers 
was in sleep mode). 



 

 

Created by STAR ELECTRONICS GmbH & Co. KG   

Date created 2021-10-05 Date modified  2021-10-05 Page 206 of 250 
 

3-
00

0
9-

0
S

01
-D

0
3_

A
P

I 
D

oc
um

en
ta

ti
on

_D
2

V
5

-F
.d

oc
x 

 

FcNotificationTypeRxCount 
Used to notify that the configured amount of FlexRay frames has been received. This notification can 
be configured (See fcbSetNotificationTypeCount). 

FcNotificationTypeTxCount 
Used to notify that the configured amount of TxAcknowledge frames has been received. This 
notification can be configured (See fcbSetNotificationTypeCount). 

FcNotificationTypeInfoCount 
Used to notify that the configured amount of info frames has been received. This notification can be 
configured (See fcbSetNotificationTypeCount). 

FcNotificationTypeErrorCount 
Used to notify that the configured amount of error frames has been received. This notification can be 
configured (See fcbSetNotificationTypeCount). 

FcNotificationTypeStatusCount 
Used to notify that the configured amount of status frames has been received. This notification can 
be configured (See fcbSetNotificationTypeCount). 

FcNotificationTypeTriggerCount 
Used to notify that the configured amount of trigger frames has been received. This notification can 
be configured (See fcbSetNotificationTypeCount). 

FcNotificationTypeNMVCount 
Used to notify that the configured amount of network management vector frames has been received. 
This notification can be configured (See fcbSetNotificationTypeCount). 

FcNotificationTypeNotificationCount 
Used to notify that the configured amount of notification frames has been received. This notification 
can be configured (See fcbSetNotificationTypeCount). 

FcNotificationTypeCcTimer 
Used to notify that the configured CC timer macrotick offset has elapsed. 

See Also 
fcbMonitoringStart, fcbSetEventHandle, fcbSetNotificationTypeCount, fcbSetTimer, 
fcbSetCcTimerConfig (Obsolete) 

15.2.2.4 fcTriggerExInfoPacket 
This structure provides information about a trigger packet. 

Typedef struct fcTriggerExInfoPacket 
{ 
 fcDword Condition; 
 fcDword TimeStamp; 
 fcDword SequenceCount; 
 fcDword Edge; 
 fcDword TriggerLine; 
 fcDword Reserved[4]; 
} fcTriggerExInfoPacket; 

Members 
Condition 

The fulfilled condition which has caused the trigger packet generation. 
TimeStamp 

The FlexCard time stamp (1 µs resolution). Indicates the time at which the packet was generated. 
SequenceCount 

Sequence count for each signal. 
Edge 

The edge on which the trigger was signalled. 
TriggerLine 

The trigger line which detected a trigger signal. 
Reserved[4] 

Reserved for future use. 



 

 

Created by STAR ELECTRONICS GmbH & Co. KG   

Date created 2021-10-05 Date modified  2021-10-05 Page 207 of 250 
 

3-
00

0
9-

0
S

01
-D

0
3_

A
P

I 
D

oc
um

en
ta

ti
on

_D
2

V
5

-F
.d

oc
x 

 

See Also 
fcPacket 

15.2.2.5 fcPacketType 
This enumeration contains the different packet types. 

Typedef enum fcPacketType 
{ 
 fcPacketTypeInfo          = 1, 
 fcPacketTypeFlexRayFrame  = 2, 
 fcPacketTypeError         = 3, 
 fcPacketTypeStatus        = 4, 
 fcPacketTypeTxAcknowledge = 6, 
 fcPacketTypeNMVector      = 7, 
 fcPacketTypeNotification  = 8, 
 fcPacketTypeTriggerEx     = 9, 
} fcPacketType; 

Members 
fcPacketTypeInfo 

Frame is an info packet. 
FcPacketTypeFlexRayFrame 

Frame is a FlexRay frame. 
FcPacketTypeError 

Frame is an error packet. 
FcPacketTypeStatus 

Frame is a status packet. 
FcPacketTypeTxAcknowledge 

Frame is a transmit acknowledge packet. 
FcPacketTypeNMVector 

Frame is a network management vector packet. 
FcPacketTypeNotification 

Frame is a notification packet. 
FcPacketTypeTriggerEx 

Frame is a trigger packet. 

See Also 
fcPacket, fcInfoPacket, fcFlexRayFrame, fcTxAcknowledgePacket, fcErrorPacket, 
fcStatusPacket, fcNMVectorPacket, fcNotificationPacket, fcTriggerExInfoPacket 

15.2.2.6 fcPacket 
This structure provides information about a packet. 

Typedef struct fcPacket 
{ 
 fcPacketType Type; 
 union 
 { 
  fcFlexRayFrame*        FlexRayFrame; 
  fcInfoPacket*          InfoPacket; 
  fcErrorPacket*         ErrorPacket; 
  fcStatusPacket*        StatusPacket; 
  fcTriggerExInfoPacket* TriggerExPacket; 
  fcTxAcknowledgePacket* TxAcknowledgePacket; 
  fcNMVectorPacket*      NMVectorPacket; 
  fcNotificationPacket*  NotificationPacket; 
 }; 
 fcPacket* pNextPacket; 
} fcPacket; 

Members 
Type 

Type of packet. 



 

 

Created by STAR ELECTRONICS GmbH & Co. KG   

Date created 2021-10-05 Date modified  2021-10-05 Page 208 of 250 
 

3-
00

0
9-

0
S

01
-D

0
3_

A
P

I 
D

oc
um

en
ta

ti
on

_D
2

V
5

-F
.d

oc
x 

 

FlexRayFrame 
Pointer to the packet data. The content depends on the type of packet. 

InfoPacket 
Pointer to the packet data. The content depends on the type of packet. 

ErrorPacket 
Pointer to the packet data. The content depends on the type of packet. 

StatusPacket 
Pointer to the packet data. The content depends on the type of packet. 

TriggerExPacket 
Pointer to the packet data. The content depends on the type of packet. 

TxAcknowledgePacket 
Pointer to the packet data. The content depends on the type of packet. 

NMVectorPacket 
Pointer to the packet data. The content depends on the type of packet. 

NotificationPacket 
Pointer to the packet data. The content depends on the type of packet. 

PNextPacket 
Pointer to the next packet. If the pointer is NULL, there are no more packets available. 

See Also 
fcPacketType, fcInfoPacket, fcFlexRayFrame, fcTxAcknowledgePacket, fcErrorPacket, 
fcStatusPacket, fcNMVectorPacket, fcNotificationPacket, fcTriggerExInfoPacket 

15.2.2.7 fcState 

This enumeration defines the possible Communication Controller POC states (FlexRay Protocol 
Specification: Vpoc!State). For more details about Communication Controller POC states, please refer to 
[3]. 

Typedef enum fcState 
{ 
 fcStateUnknown = 0, 
 fcStateDefaultConfig, 
 fcStateReady, 
 fcStateNormalActive, 
 fcStateNormalPassive, 
 fcStateHalt, 
 fcStateMonitorMode, 
 fcStateConfig, 
 
 fcStateWakeupStandby, 
 fcStateWakeupListen, 
 fcStateWakeupSend, 
 fcStateWakeupDetect, 
 
 fcStateStartupPrepare, 
 fcStateColdstartListen, 
 fcStateColdstartCollisionResolution, 
 fcStateColdstartConsistencyCheck, 
 fcStateColdstartGap, 
 fcStateColdstartJoin, 
 fcStateIntegrationColdstartCheck, 
 fcStateIntegrationListen, 
 fcStateIntegrationConsistencyCheck, 
 fcStateInitializeSchedule, 
 fcStateAbortStartup, 
 fcStateStartupSuccess, 
}fcState; 

Members 
fcStateUnknown 

Communication controller state is not known. 
FcStateDefaultConfig 

Communication controller is in DEFAULT_CONFIG state. 



 

 

Created by STAR ELECTRONICS GmbH & Co. KG   

Date created 2021-10-05 Date modified  2021-10-05 Page 209 of 250 
 

3-
00

0
9-

0
S

01
-D

0
3_

A
P

I 
D

oc
um

en
ta

ti
on

_D
2

V
5

-F
.d

oc
x 

 

FcStateReady 
Communication controller is in READY state. 

FcStateNormalActive 
Communication controller is in NORMAL_ACTIVE state.  

FcStateNormalPassive 
Communication controller is in NORMAL_PASSIVE state. 

FcStateHalt 
Communication controller is in HALT state. 

FcStateMonitorMode 
Communication controller is in MONITORMODE state 

fcStateConfig 
Communication controller is in CONFIG state. 

FcStateWakeupStandby 
Communication controller is in WAKEUP_STANDBY state. 

FcStateWakeupListen 
Communication controller is in WAKEUP_LISTEN state. 

FcStateWakeupSend 
Communication controller is in WAKEUP_SEND state. 

FcStateWakeupDetect 
Communication controller is in WAKEUP_DETECT state. 

FcStateStartupPrepare 
Communication controller is in STARTUP_PREPARE state. 

FcStateColdstartListen 
Communication controller is in COLDSTART_LISTEN state. 

FcStateColdstartCollisionResolution 
Communication controller is in COLDSTART_COLLISION_RESOLUTION state. 

FcStateColdstartConsistencyCheck 
Communication controller is in COLDSTART_CONSISTENCY_CHECK state. 

FcStateColdstartGap 
Communication controller is in COLDSTART_GAP state. 

FcStateColdstartJoin 
Communication controller is in COLDSTART_JOIN state. 

FcStateIntegrationColdstartCheck 
Communication controller is in INTEGRATION_COLDSTART_CHECK state. 

FcStateIntegrationListen 
Communication controller is in INTEGRATION_LISTEN state. 

FcStateIntegrationConsistencyCheck 
Communication controller is in INTEGRATION_CONSISTENCY_CHECK state. 

FcStateInitializeSchedule 
Communication controller is in INITIALIZE_SCHEDULE state. 

FcStateAbortStartup 
Communication controller is in ABORT_STARTUP state. 

FcStateStartupSuccess 
Communication controller is in STARTUP_SUCCESS state. 

See Also 
fcbGetCcState, fcbMonitoringStart 

15.2.2.8 fcFlexRayFrame 

This structure is equivalent to the FlexRay frame described in the FlexRay specification [3]. 



 

 

Created by STAR ELECTRONICS GmbH & Co. KG   

Date created 2021-10-05 Date modified  2021-10-05 Page 210 of 250 
 

3-
00

0
9-

0
S

01
-D

0
3_

A
P

I 
D

oc
um

en
ta

ti
on

_D
2

V
5

-F
.d

oc
x 

 

Typedef struct fcFlexRayFrame 
{ 
    fcDword ID : 11; 
    fcDword STARTUP : 1; 
    fcDword SYNC : 1; 
    fcDword NF : 1; 
    fcDword PP : 1; 
    fcDword R : 1; 
    fcDword PayloadLength : 7; 
    fcDword CycleCount : 6; 
    fcDword HeaderCRC : 11; 
    fcWord* pData; 
 
    fcChannel Channel; 
    fcDword ValidFrame : 1; 
    fcDword SyntaxError : 1;  
    fcDword ContentError : 1;  
    fcDword SlotBoundaryViolation : 1; 
    fcDword AsyncMode : 1; 
    fcDword FrameCRC : 24; 
 
    fcDword TimeStamp; 
    fcCC    CC; 
} fcFlexRayFrame; 

Members 
ID 

The frame id defines the slot in which the frame was transmitted.  
(FlexRay Protocol Specification: Vrf!Header!FrameID) 

STARTUP 
Indicates if the frame is a start-up frame (=1) or not (=0)  
(FlexRay Protocol Specification: Vrf!Header!SuFIndicator) 

SYNC 
Indicates if the frame is a sync frame (=1) or not (=0)  
(FlexRay Protocol Specification: Vrf!Header!SyFIndicator) 

NF  
Set to 0, the null frame indicator indicates that pData contains no valid data. Set to 1, it indicates 
that pData contains valid data.  
(FlexRay Protocol Specification: Vrf!Header!NFIndicator) 

PP 
The payload preamble indicator indicates whether an optional vector is contained within the payload 
segment of the frame transmitted. In the static segment, it indicates the presence of a network 
management vector at the beginning of the payload. In the dynamic segment it indicates the presence 
of a message id at the beginning of the payload, (FlexRay Protocol Specification: 
Vrf!Header!PPIndicator). 

R 
Reserved Bit (FlexRay Protocol Specification: Vrf!Header!Reserved)  

PayloadLength 
Defines the number of 16-bit words contained in pData  
(FlexRay Protocol Specification: Vrf!Header!Length) 

CycleCount 
The cycle in which the frame was received. (FlexRay Protocol Specification: 
Vrf!Header!CycleCount) 

HeaderCRC 
The header CRC containing the cyclic redundancy check code is computed over the sync frame 
indicator, the start-up frame indicator, the frame id and the payload length (FlexRay Protocol 
Specification: Vrf!Header!HeaderCRC) 

pData 
The pointer to the payload data. The payload is given in 16-bit words. 
(FlexRay Protocol Specification: Vrf!Payload) 



 

 

Created by STAR ELECTRONICS GmbH & Co. KG   

Date created 2021-10-05 Date modified  2021-10-05 Page 211 of 250 
 

3-
00

0
9-

0
S

01
-D

0
3_

A
P

I 
D

oc
um

en
ta

ti
on

_D
2

V
5

-F
.d

oc
x 

 

Channel 
The channel (A or B) on which the frame was received.  
(FlexRay Protocol Specification: Vrf!Channel) 

ValidFrame 
If a valid frame was received, this parameter is set to 1 (FlexRay Protocol Specification: 
Vss!ValidFrameA or Vss!ValidFrameB depends on Channel  - Table 9-2: Slot status interpretation) 

SyntaxError 
If a syntax error was observed, this parameter is set to 1 (frame is syntactically incorrect). (FlexRay 
Protocol Specification: Vss!SyntaxErrorA or Vss!SyntaxErrorB depends on Channel) 

ContentError 
If a content error was observed, this parameter is set to 1 (frame is semantically incorrect). (FlexRay 
Protocol Specification: Vss!ContentErrorA or Vss!ContentErrorB depends on Channel) 

SlotBoundaryViolation 
If a slot boundary violation was observed, this parameter is set to 1 (FlexRay Protocol Specification: 
Vss!BviolationA or Vss!BviolationB depends on Channel)  

AsyncMode 
If the packet was generated by the asynchronous debug mode, this parameter is set to 1. 

FrameCRC 
If the packet was generated by the asynchronous debug mode, the FrameCRC contains the cyclic 
redundancy check code is computed over complete frame. In synchronous monitoring mode, this 
parameter is not set. 

TimeStamp 
The FlexCard time stamp (1 µs resolution). The timestamp marks the begin of the reception of the 
frame. 

CC 
The FlexCard CC which created this packet. 
 

 

Information 

The payload length is a multiple of 16-bit words. The payload data is also given in 16-bit words. 

 
 

 

Information 

Members AsyncMode and FrameCRC are initially supported by FlexCard VxWorks driver S2V1-
F. 
 

15.2.2.9 fcTxAcknowledgePacket 
This structure provides information about a transmit acknowledge packet. Transmit acknowledge packets 
are used to inform the user when a frame is transmitted. 



 

 

Created by STAR ELECTRONICS GmbH & Co. KG   

Date created 2021-10-05 Date modified  2021-10-05 Page 212 of 250 
 

3-
00

0
9-

0
S

01
-D

0
3_

A
P

I 
D

oc
um

en
ta

ti
on

_D
2

V
5

-F
.d

oc
x 

 

Typedef struct fcTxAcknowledgePacket 
{ 
    fcDword BufferId; 
    fcDword TimeStamp; 
    fcDword CycleCount; 
 
    fcDword ID : 11; 
    fcDword STARTUP : 1; 
    fcDword SYNC : 1; 
    fcDword NF : 1; 
    fcDword PP : 1; 
    fcDword R : 1; 
    fcDword PayloadLength : 7; 
    fcDword ValidFrame : 1; 
    fcDword SyntaxError : 1; 
    fcDword ContentError : 1; 
    fcDword HeaderCRC : 11; 
    fcWord* pData; 
    fcChannel Channel; 
    fcCC CC; 
} fcTxAcknowledgePacket; 

Members 
BufferId 

The buffer id used to transmit the frame (equivalent to the buffer id returned by the function 
fcbFRConfigureMessageBuffer). 

TimeStamp 
The FlexCard time stamp (1 µs resolution). The timestamp marks the beginning of the transmission of 
the frame. 

CycleCount 
Indicates the cycle in which the frame was transmitted. (FlexRay Protocol Specification: 
Vtf!Header!CycleCount) 

ID 
The frame id defines the slot in which the frame was transmitted. 

STARTUP 
Indicates if the frame was a start-up frame (=1) or not (=0) 

SYNC 
Indicates if the frame was a sync frame (=1) or not (=0) 

NF 
Set to 0, the null frame indicator indicates that pData contains no valid data. Set to 1, it indicates 
that pData contains valid data.  

PP 
The payload preamble indicator indicates whether an optional vector is contained within the payload 
segment of the frame transmitted. In the static segment, it indicates the presence of a network 
management vector at the beginning of the payload. In the dynamic segment it indicates the presence 
of a message id at the beginning of the payload. 

R 
Reserved Bit 

PayloadLength 
Defines the number of 16-bit words contain in pData 

ValidFrame 
If a valid frame was received, this parameter is set to 1 (FlexRay Protocol Specification: 
Vss!ValidFrameA or Vss!ValidFrameB depends on Channel  - Table 9-2: Slot status interpretation) 

SyntaxError 
If a syntax error was observed, this parameter is set to 1 (frame is syntactically incorrect). (FlexRay 
Protocol Specification: Vss!SyntaxErrorA or Vss!SyntaxErrorB depends on Channel) 

ContentError 
If a content error was observed, this parameter is set to 1 (frame is semantically incorrect). (FlexRay 
Protocol Specification: Vss!ContentErrorA or Vss!ContentErrorB depends on Channel) 



 

 

Created by STAR ELECTRONICS GmbH & Co. KG   

Date created 2021-10-05 Date modified  2021-10-05 Page 213 of 250 
 

3-
00

0
9-

0
S

01
-D

0
3_

A
P

I 
D

oc
um

en
ta

ti
on

_D
2

V
5

-F
.d

oc
x 

 

HeaderCRC 
The header CRC contains the cyclic redundancy check code is computed over the sync frame indicator, 
the start-up frame indicator, the frame id and the payload length. 

PData 
The pointer to the payload data. The payload is given in 16-bit words. 

Channel 
The channel (A or B) on which the frame was transmitted.  
(FlexRay Protocol Specification: Vrf!Channel) 

CC 
The FlexCard CC which created this packet. 
 

 

Information 

Members ValidFrame, SyntaxError, ContentError and HeaderCRC are initially 
supported by FlexCard VxWorks driver S2V1-F. 
 

15.2.3 Not Supported Functions 

The VxWorks driver doesn’t support the following functions: 

fcGetErrorText 
fcFreeMemory 
fcbCanDbCcConfiguration (Obsolete)  
fcbTrigger (Obsolete) 
fcbGetEnumFlexCardsV2 (Obsolete) 

15.2.4 Changed Functions 

15.2.4.1 fcbMonitoringStart 
This function is used to start the monitoring of a FlexRay bus. Once called, the function changes the 
Communication Controller state from configuration state to normal active state (if the cluster integration 
succeeds). The current Communication Controller state can be read using the function fcbGetCcState 
(Obsolete). If the FlexCard is synchronized with the cluster the function fcbGetCcState (Obsolete) 
will return the value fcStateNormalActive. Please note, that if an event for the event counter (for the 
several packet type) is registered with fcbSetEventHandle, this function activates the corresponding 
hardware interrupts and the application is notified if this event occurred. 

FcError fcbMonitoringStart( 
fcHandle hFlexCard, 
fcMonitoringModes mode, 
bool restartTimestamps, 
bool enableCycleStartEvents 
bool enableColdstart, 
bool enableWakeup 

) 

Parameters 
hFlexCard 

[IN] Handle to a FlexCard. 
Mode 

[IN] The monitoring mode. See fcMonitoringModes for details. 
RestartTimestamps 

[IN] Set this parameter to false to restart the measurement without resetting the FlexCard timestamp. 
Set it to true to start the measurement from the beginning. The timestamps have microsecond 
resolution. 

EnableCycleStartEvents 
[IN] Set this parameter to true to enable the cycle start events in order that at the beginning of every 
cycle the event fcNotificationTypeCycleStarted is signalled.  



 

 

Created by STAR ELECTRONICS GmbH & Co. KG   

Date created 2021-10-05 Date modified  2021-10-05 Page 214 of 250 
 

3-
00

0
9-

0
S

01
-D

0
3_

A
P

I 
D

oc
um

en
ta

ti
on

_D
2

V
5

-F
.d

oc
x 

 

EnableColdstart 
[IN] Set this parameter to true to allow the FlexCard to initialize the cluster communication, otherwise 
the coldstart inhibit mode is active. This feature can not be used in the monitoring modes 
fcMonitoringDebug and fcMonitoringDebugAsynchron. 

EnableWakeup 
[IN] Set this parameter to true to transmit a wake-up pattern to the configured wake-up channel 
(FlexRay Protocol Specification: pWakeupChannel). A cluster wake-up must precede the 
communication start-up to ensure that all nodes in a cluster are awake. The minimum requirement for 
a cluster wake-up is that all bus drivers are supplied with power. This feature can not be used in the 
monitoring modes fcMonitoringDebug and fcMonitoringDebugAsynchron. 

Return values 
If the function succeeds, the return value is 0. If the value is <> 0, use the functions described in the section 
Error Handling to get extended error information. 

Remarks 
After the monitoring has started, the user should check if the integration in the cluster was successful: 
fcbGetCcState (Obsolete) should return the state fcStateNormalActive. 
 

 

Information 

After the monitoring has successfully started, the receive process has to be started as soon as 
possible to avoid an overflow (error packet fcErrFlexcardOverflow is received). Once an 
overflow occurred, no more packets can be received. The monitoring has to be stopped and 
started again. 

See Also 
fcbMonitoringStop, fcbGetCcState (Obsolete), fcMonitoringModes, fcbSetEventHandle 

15.2.4.2 fcbMonitoringStop 
This function stops the FlexRay bus measurement. The Communication Controller is set back in its 
configuration state. 

Please note, that if an event for the event counter (for the several packet types) is registered with 
fcbSetEventHandle, this function deactivates the corresponding hardware interrupts and the 
application is not notified if this event occurred. 

FcError fcbMonitoringStop( 
fcHandle hFlexCard 

) 

Parameters 
hFlexCard 

[IN] Handle to FlexCard 

Return values 
If the function succeeds, the return value is 0. If the value is <> 0, use the functions described in the section 
Error Handling to get extended error information. 

See Also 
fcbMonitoringStart 

15.2.4.3 fcbSetEventHandle 
This function registers an event handle for a specific notification type. The event handling is based on 
binary semaphores. 



 

 

Created by STAR ELECTRONICS GmbH & Co. KG   

Date created 2021-10-05 Date modified  2021-10-05 Page 215 of 250 
 

3-
00

0
9-

0
S

01
-D

0
3_

A
P

I 
D

oc
um

en
ta

ti
on

_D
2

V
5

-F
.d

oc
x 

 

FcError fcbSetEventHandle( 
fcHandle hFlexCard, 
fcHandle hEvent, 
fcNotificationType type 

) 

Parameters 
hFlexCard 

[IN] Handle to a FlexCard 
hEvent 

[IN] Event handle to be registered. This value depends on the given type. Set this parameter to 
NULL to deregister the event handle for the given type. 

Type 
[IN] The notification type for which the event has to be registered. 

Return values 
If the function succeeds, the return value is 0. If the value is <> 0, use the functions described in the section 
Error Handling to get extended error information. 

See Also 
fcNotificationType 

Example 
See Example in fcbSetNotificationTypeCount 

15.2.4.4 fcbReceive 
This function reads all available packets from the FlexCard memory into a memory block allocated by the 
fcBase API during the initialization phase in fcbOpen. The frames are stored into a linked list. The memory 
allocated by this function is released by the fcbClose function. Please note, that every function call from 
fcbReceive overwrites the old frames in the memory block. The size of the memory block can be 
configured with fcbSetReceiveMemorySize. 

FcError fcbReceive( 
fcHandle hFlexCard, 
fcPacket** pPacket 

); 

Parameters 
hFlexCard 

[IN] Handle to a FlexCard 
pPacket 

[OUT] Address of the fcPacket object pointer. The memory for this structure and its content is 
allocated by the fcBase API. Packets are available if the return code is 0 and pPacket is not a null 
pointer. 

Return values 
If the function succeeds, the return value is 0. If the value is <> 0, use the functions described in the section 
Error Handling to get extended error information. 



 

 

Created by STAR ELECTRONICS GmbH & Co. KG   

Date created 2021-10-05 Date modified  2021-10-05 Page 216 of 250 
 

3-
00

0
9-

0
S

01
-D

0
3_

A
P

I 
D

oc
um

en
ta

ti
on

_D
2

V
5

-F
.d

oc
x 

 

Example 
fcPacket* pPackets = NULL; 
fcError e = fcbReceive(m_hFlexCard, &pPackets); 
if (0 == e) 
{ 
 fcPacket* pCurrentPacket = pPacket; 
 while (NULL != pCurrentPacket) 
 { 
  switch (pCurrentPacket->Type) 
  { 
  case fcPacketTypeInfo: 
  { 
   fcInfoPacket* pFrame = pCurrentPacket->InfoPacket; 
   printf(“[fcPacketTypeInfo] CC: %d TimeStamp: %f Cycle: %d”, 
    pFrame->CC + 1, 
    (float) pFrame->TimeStamp * 0.000001, 
    pFrame->CurrentCycle); 
   printf(“ Rate Correction: %d”, pFrame->RateCorrection); 
   printf(“ Offset Correction: %d”, pFrame->OffsetCorrection); 
   printf(“ Clock Correction Failed Counter: %d”, 
    pFrame->ClockCorrectionFailedCounter); 
   printf(“ Passive to Active Count: %d”, 
    pFrame->PassiveToActiveCount); 
   printf(“\n”); 
   break; 
  } 
 
  case fcPacketTypeFlexRayFrame: 
  { 
   fcFlexRayFrame* pFrame = pCurrentPacket->FlexRayFrame; 
   printf(“[fcPacketTypeFlexRayFrame] CC: %d TimeStamp: %f “ 
    “Cycle: %d ID: %d Channel: %d PayloadLength: %d”, 
    pFrame->CC + 1, 
    (float) pFrame->TimeStamp * 0.000001, 
    pFrame->CycleCount, 
    pFrame->ID, 
    pFrame->Channel, 
    pFrame->PayloadLength); 
 
   for (int I = 0; i < pFrame->PayloadLength; i++) 
   { 
    printf(“ %04X”, pFrame->pData[i]); 
   } 
 
   if (pFrame->PP) printf(“ PP”); 
   if (pFrame->NF) printf(“ NF”); 
   if (pFrame->SYNC) printf(“ SYNC”); 
   if (pFrame->STARTUP) printf(“ STARTUP”); 
   if (pFrame->SyntaxError) printf(“ SyntaxError”); 
   if (pFrame->ContentError) printf(“ ContentError”); 
   if (pFrame->ValidFrame) printf(“ ValidFrame”); 
   if (pFrame->SlotBoundaryViolation) 
    printf(“ SlotBoundaryViolation”); 
   printf(“\n”); 
   break; 
  } 
 
  case fcPacketTypeError: 
   printf(“[fcPacketTypeError]\n”); 
   break; 
 
  case fcPacketTypeStatus: 
   printf(“[fcPacketTypeStatus]\n”); 
   break; 
 
  case fcPacketTypeTriggerEx: 
   printf(“[fcPacketTypeTriggerEx]\n”); 
   break; 
 



 

 

Created by STAR ELECTRONICS GmbH & Co. KG   

Date created 2021-10-05 Date modified  2021-10-05 Page 217 of 250 
 

3-
00

0
9-

0
S

01
-D

0
3_

A
P

I 
D

oc
um

en
ta

ti
on

_D
2

V
5

-F
.d

oc
x 

 

  case fcPacketTypeTxAcknowledge: 
   printf(“[fcPacketTypeTxAcknowledge]\n”); 
   break; 
 
  case fcPacketTypeNMVector: 
   printf(“[fcPacketTypeNMVector]\n”); 
   break; 
  } 
 
  pCurrentPacket = pCurrentPacket->pNextPacket; 
 } 
} 

15.3 Configuration 

15.3.1 fcbSetPacketGeneration 

This function allows to dis- or enable the generation of a packet type. It is designed to reduce the number 
of packets, which will be generated by the FlexCard. 

fcError fcbSetPacketGeneration( 
fcHandle hFlexCard, 
fcPacketType type, 
bool bEnable 

) 

Parameters 
hFlexCard 

[IN] Handle to a FlexCard 
type 

[IN] The packet type. 
bEnable 

[IN] Set to true to enable the generation and to false to disable it. 

Return values 
If the function succeeds, the return value is 0. If the value is <> 0, use the functions described in the section 
Error Handling to get extended error information. 

See Also 
fcbReceive, fcPacketType 

15.3.2 fcbSetReceiveMemorySize 

This function allows configuring the size of memory, where fcbReceive will store all received frames. This 
function must be called before you open a connection to the FlexCard. During the 217ehavior217ation 
phase (in fcbOpen) the amount of memory is dynamically allocated. Closing the connection (by fcbClose) 
releases the memory automatically. 

fcError fcbSetReceiveMemorySize( 
fcDword size; 

) 

Parameters 
size 

[IN] The size of memory. The default value is 128 KB and it is recommended to set size in a range 
from 20 KB to 70 MB. Other values than the recommended values are ignored, and size will be set 
to default. 



 

 

Created by STAR ELECTRONICS GmbH & Co. KG   

Date created 2021-10-05 Date modified  2021-10-05 Page 218 of 250 
 

3-
00

0
9-

0
S

01
-D

0
3_

A
P

I 
D

oc
um

en
ta

ti
on

_D
2

V
5

-F
.d

oc
x 

 

Return values 
If the function succeeds, the return value is 0. If the value is <> 0, use the functions described in the section 
Error Handling to get extended error information. 

See Also 
fcbReceive, fcbOpen, fcbClose 

15.4 Event 

15.4.1 fcbSetNotificationTypeCount 

This function allows configuring the event counter for the several packet types. Count represents the 
number of packets (of a dedicated packet type) which need to be received to initiate an event of the 
chosen notification packet type. 

fcError fcbSetNotificationTypeCount( 
fcHandle hFlexCard, 
fcNotificationType type, 
fcByte count 

) 

Parameters 
hFlexCard 

[IN] Handle to a FlexCard 
type 

[IN] The notification type for which the configuration has to be used. The notification types 
fcNotificationTypeCycleStarted, fcNotificationTypeWakeup, 
fcNotificationTypeTimer and fcNotificationTypeCcTimer 
are not supported. 

Count 
[IN] The value represents the number of packets (of a dedicated packet type) which need to be 
received to initiate an event of the chosen notification packet type. Valid values range from 1 to 
255. 

Return values 
If the function succeeds, the return value is 0. If the value is <> 0, use the functions described in the section 
Error Handling to get extended error information. 

See Also 
fcNotificationType, fcbSetEventHandle, fcbMonitoringStart, fcbMonitoringStop 



 

 

Created by STAR ELECTRONICS GmbH & Co. KG   

Date created 2021-10-05 Date modified  2021-10-05 Page 219 of 250 
 

3-
00

0
9-

0
S

01
-D

0
3_

A
P

I 
D

oc
um

en
ta

ti
on

_D
2

V
5

-F
.d

oc
x 

 

Example 
fcPacket* pPackets = NULL; 
SEM_ID semInfoCount = NULL; 
semInfoCount = semBCreate(SEM_Q_FIFO, SEM_EMPTY); 
assert (NULL != semInfoCount); 
 
fcError e = fcbSetEventHandle(m_hFlexCard, (void *) semInfoCount, \ 
 fcNotificationTypeInfoCount); 
if (0 == e) 
{ 
 // Configure the Info packet event counter 
 fcbSetNotificationTypeCount(m_hFlexCard,fcNotificationTypeInfoCount, 2); 
 
 // Start monitoring and wait for the event forever 
 fcbMonitoringStart(m_hFlexCard, fcMonitoringNormal, 1, 0, 0, 0); 
 semTake(semInfoCount, WAIT_FOREVER); 
 
 // Min. 2 Info packets can be received now 
 e = fcbReceive(m_hFlexCard, &pPackets); 
 if (0 == e) 
 { /* Process packets */ } 
} 

 



 

 

Created by STAR ELECTRONICS GmbH & Co. KG   

Date created 2021-10-05 Date modified  2021-10-05 Page 220 of 250 
 

3-
00

0
9-

0
S

01
-D

0
3_

A
P

I 
D

oc
um

en
ta

ti
on

_D
2

V
5

-F
.d

oc
x 

 

16 Obsolete 

16.1 fcInfo (Obsolete) 

 

Information 

This structure is obsolete. Please use fcInfoHwSw instead. 

 
 

This structure provides information about the components and the identifier of a FlexCard. If more than 
one FlexCard is detected on the system, the fcbGetEnumFlexCards (Obsolete) function returns a 
linked list of this structure. If a connection to a FlexCard is already opened, this FlexCard does not appear 
in this list. 

Typedef struct fcInfo 
{ 

fcDword FlexCardId; 
fcVersion Version; 
struct fcInfo* pNext; 

} fcInfo; 

Members 
FlexCardId 

Unique number used to identify a FlexCard. This id is required to open a connection to the FlexCard. 
Version 

Version information about hardware and software components of the FlexCard. 
pNext 

Pointer to the next available FlexCard. If no other FlexCard exists, pNext is a null pointer. 

See Also 
fcVersion (Obsolete), fcbGetEnumFlexCards (Obsolete) 

16.2 fcInfoV2 (Obsolete) 

 

Information 

This structure is obsolete. Please use fcInfoHwSw instead. 

 
 

This structure provides information about the components, the identifier and the current device state of a 
FlexCard. If more than one FlexCard is detected on the system, the fcbGetEnumFlexCardsV2 
(Obsolete) function returns a linked list of this structure. 

Typedef struct fcInfoV2 
{ 
 fcDword FlexCardId; 
 fcVersion Version; 
 fcDword Busy; 
 fcDword Reserved; 
 struct fcInfoV2* pNext; 
} fcInfoV2; 

Members 
FlexCardId 

Unique number used to identify a FlexCard. This id is required to open a connection to the FlexCard. 
Version 

Version information about hardware and software components of the FlexCard. 
Busy 

The current device state. A value <> 0 indicates a connection to this FlexCard is already opened. 



 

 

Created by STAR ELECTRONICS GmbH & Co. KG   

Date created 2021-10-05 Date modified  2021-10-05 Page 221 of 250 
 

3-
00

0
9-

0
S

01
-D

0
3_

A
P

I 
D

oc
um

en
ta

ti
on

_D
2

V
5

-F
.d

oc
x 

 

Reserved 
Reserved for future use. 

pNext 
Pointer to the next available FlexCard. If no other FlexCard exists, pNext is a null pointer. 

See Also 
fcVersion (Obsolete), fcbGetEnumFlexCardsV2 (Obsolete) 

16.3 fcVersion (Obsolete) 

 

Information 

This structure is obsolete. Please use fcInfoHw and fcInfoSw instead. 

 
 

This structure provides version information about the FlexCard hardware and software components. 

Typedef struct fcVersion 
{ 
 fcVersionNumber BaseDll; 
 fcVersionNumber DeviceDriver; 
 fcVersionNumber Firmware; 
 fcVersionNumber Hardware; 
 fcCCType CCType; 
 fcVersionNumber CC; 
 fcVersionNumber BusGuardian; 
 fcVersionNumber Protocol; 
 fcDword Serial; 
 fcFlexCardDeviceId DeviceId; 
 fcVersionCC* pVersionCC; 
 fcDword Reserved[2]; 
}fcVersion; 

Members 
BaseDll 

DLL Base Version 
DeviceDriver 

Device driver version 
Firmware 

Firmware (gateway software) version 
Hardware 

FlexCard hardware version 
CCType 

Communication controller type 
CC 

Communication controller module version 
BusGuardian 

Bus Guardian version 
Protocol 

FlexRay Protocol version 
Serial 

FlexCard serial number. A zero value indicates a non-valid FlexCard serial number. 
DeviceId 

Device identifier to detect the FlexCard type (FlexCard Cyclone II, FlexCard Cyclone II SE or FlexCard 
PMC). 

pVersionCC 
Pointer to version information about the available Communication Controllers. 

Reserved 
Reserved for internal purpose 



 

 

Created by STAR ELECTRONICS GmbH & Co. KG   

Date created 2021-10-05 Date modified  2021-10-05 Page 222 of 250 
 

3-
00

0
9-

0
S

01
-D

0
3_

A
P

I 
D

oc
um

en
ta

ti
on

_D
2

V
5

-F
.d

oc
x 

 

See Also 
fcFlexCardDeviceId, fcInfo (Obsolete), fcInfoV2 (Obsolete), fcbGetEnumFlexCards 
(Obsolete), fcbGetEnumFlexCardsV2 (Obsolete) 

16.4 fcbGetEnumFlexCards (Obsolete) 

 

Information 

This function is obsolete. Please use fcbGetEnumFlexCardsV3 instead. 

 
 

This function returns a linked list of the unused FlexCards found on the system. To free the memory, which 
was allocated by the function, please use the function fcFreeMemory with type fcMemoryTypeInfo. 

fcError fcbGetEnumFlexCards( 
 fcInfo** pInfo 
) 

Parameters 
pInfo 

[OUT] linked list of fcInfo (Obsolete) objects 

Return values 
If the function succeeds, the return value is 0. If the function fails, the content of pInfo is not valid. The 
error code NULL_PARAMETER is returned if pInfo parameter is a null pointer. If the memory allocation 
fails, the error code MEMORY_ALLOCATION_FAILED is returned. 

Remarks 
If a connection to a FlexCard is already opened, this FlexCard does not appear in this list. If the function 
succeeds, there will always be one valid fcInfo (Obsolete) structure regardless if there is a FlexCard in 
the system or not. This functionality is given to provide version information about the DLL / library. The 
version information concerning the hardware is only valid if the identifier (pInfo->FlexCardId) is not 0. 
 

 

Information 

This function allocates memory for use. To prevent memory leaks you have to free it up by calling 
the function fcFreeMemory with the type fcMemoryTypeInfo. 

From FlexCard API version S2V0-F on it is possible to use four FlexCards in one PC. With FlexCard 
API versions up to S2V0-F it isn’t possible to use two FlexCards in one PC at the same time. That 
means that only the first inserted FlexCard can be used. The second one doesn’t appear in the list 
of available FlexCards. 

From FlexCard API version S6V1-F on it is possible to use eight FlexCards in one PC. 

See Also 
fcInfo (Obsolete), 

16.5 fcbGetEnumFlexCardsV2 (Obsolete) 

 

Information 

This function is obsolete. Please use fcbGetEnumFlexCardsV3 instead. 

 
 
This function returns a linked list of the installed FlexCards found on the system. To free the memory, 
which was allocated by this function, please use the function fcFreeMemory with type 
fcMemoryTypeInfoV2. 



 

 

Created by STAR ELECTRONICS GmbH & Co. KG   

Date created 2021-10-05 Date modified  2021-10-05 Page 223 of 250 
 

3-
00

0
9-

0
S

01
-D

0
3_

A
P

I 
D

oc
um

en
ta

ti
on

_D
2

V
5

-F
.d

oc
x 

 

fcError fcbGetEnumFlexCardsV2( 
 fcInfoV2** pInfoV2 
) 

Parameters 
pInfoV2 

[OUT] linked list of fcInfoV2 (Obsolete) objects 

Return values 
If the function succeeds, the return value is 0. If the function fails, the content of pInfoV2 is not valid. The 
error code NULL_PARAMETER is returned if pInfoV2 parameter is a null pointer. If the memory allocation 
fails, the error code MEMORY_ALLOCATION_FAILED is returned. 

Remarks 
If the function succeeds, there will always be one valid fcInfoV2 (Obsolete) structure regardless if there 
is a FlexCard in the system or not. This functionality is given to provide version information about the DLL / 
library. The version information concerning the hardware is only valid if the identifier (pInfoV2->FlexCardId) 
is not 0. 
 

 

Information 

This function allocates memory for use. To prevent memory leaks you have to free it up by calling 
the function fcFreeMemory with the type fcMemoryTypeInfoV2. 
 

See Also 
fcInfoV2 (Obsolete) 

16.6 fcbMonitoringStart (Obsolete) 

 

Information 

This function is obsolete. Please use fcbFRMonitoringStart instead. 

 
 

This function is used to start the monitoring of a FlexRay bus. Once called, the function changes the 
Communication Controller state from configuration state to normal active state (if the cluster integration 
succeeds). The current Communication Controller state can be read using the function fcbGetCcState 
(Obsolete). If the FlexCard is synchronized with the cluster the function fcbGetCcState (Obsolete) 
will return the value fcStateNormalActive. 

fcError fcbMonitoringStart( 
fcHandle hFlexCard, 
fcMonitoringModes mode,  
fcBool restartTimestamps, 
fcBool enableCycleStartEvents 
fcBool enableColdstart, 
fcBool enableWakeup 

) 

Parameters 
hFlexCard 

[IN] Handle to a FlexCard. 
Mode 

[IN] The monitoring mode. Not every monitoring mode is supported by all Communication Controllers. 
See fcMonitoringModes for details.  



 

 

Created by STAR ELECTRONICS GmbH & Co. KG   

Date created 2021-10-05 Date modified  2021-10-05 Page 224 of 250 
 

3-
00

0
9-

0
S

01
-D

0
3_

A
P

I 
D

oc
um

en
ta

ti
on

_D
2

V
5

-F
.d

oc
x 

 

restartTimestamps 
[IN] Set this parameter to 0 to restart the measurement without resetting the FlexCard timestamp. 
Set it to <> 0 to start the measurement from the beginning. The timestamps have microsecond 
resolution. 

enableCycleStartEvents 
[IN] Set this parameter to <> 0 to enable the cycle start events in order that at the beginning of every 
cycle the event fcNotificationTypeCycleStarted is signalled.  

enableColdstart 
[IN] Set this parameter to <> 0 to allow the FlexCard to initialize the cluster communication, otherwise 
the coldstart inhibit mode is active. This feature can not be used in the monitoring modes 
fcMonitoringDebug and fcMonitoringDebugAsynchron. 

enableWakeup 
[IN] Set this parameter to <> 0 to transmit a wake-up pattern on the configured wake-up channel 
(FlexRay Protocol Specification: pWakeupChannel). A cluster wake-up must precede the 
communication start-up to ensure that all nodes in a cluster are awake. The minimum requirement for 
a cluster wake-up is that all bus drivers are supplied with power. This feature can not be used in the 
monitoring modes fcMonitoringDebug and fcMonitoringDebugAsynchron. 

Return values 
If the function succeeds, the return value is 0. If the value is <> 0, use the functions described in the section 
Error Handling to get extended error information. 

Remarks 
After the monitoring has started, the user should check if the integration in the cluster was successful: 
fcbGetCcState (Obsolete) should return the state fcStateNormalActive. 
 

 

Information 

After the monitoring has successfully started, the receive process has to be started as soon as 
possible to avoid an overflow (error packet fcErrFlexcardOverflow is received). Once an 
overflow occurred, no more packets can be received. The monitoring has to be stopped and 
started again. 

See Also 
fcbMonitoringStop (Obsolete), fcbGetCcState (Obsolete), fcMonitoringModes, 
fcbSetEventHandle (Obsolete) 

16.7 fcbMonitoringStop (Obsolete) 

 

Information 

This function is obsolete. Please use fcbFRMonitoringStop instead. 

 
 

This function stops the FlexRay bus measurement. The Communication Controller is set back in its 
configuration state. 

fcError fcbMonitoringStop( 
fcHandle hFlexCard 

) 

Parameters 
hFlexCard 

[IN] Handle to FlexCard 



 

 

Created by STAR ELECTRONICS GmbH & Co. KG   

Date created 2021-10-05 Date modified  2021-10-05 Page 225 of 250 
 

3-
00

0
9-

0
S

01
-D

0
3_

A
P

I 
D

oc
um

en
ta

ti
on

_D
2

V
5

-F
.d

oc
x 

 

Return values 
If the function succeeds, the return value is 0. If the value is <> 0, use the functions described in the section 
Error Handling to get extended error information. 

See Also 
fcbMonitoringStart (Obsolete) 

16.8 fcbGetCcState (Obsolete) 

 

Information 

This function is obsolete. Please use fcbFRGetCcState instead. 

 
This function returns the current Communication Controller POC state. For a description of possible states, 
refer to the enumeration fcState. This function should be used to check if the integration into a FlexRay 
cluster has succeeded. 

fcError fcbGetCcState( 
fcHandle hFlexCard, 
fcState* pState 

) 

Parameters 
hFlexCard 

[IN] Handle to a FlexCard 
pState 

[OUT] Current Communication Controller state 

Return values 
If the function succeeds, the return value is 0. If the value is <> 0, use the functions described in the section 
Error Handling to get extended error information. 

See 
fcbMonitoringStart (Obsolete), fcbMonitoringStop (Obsolete) 

16.9 fcbSetTransceiverState (Obsolete) 

 

Information 

This function is obsolete. Please use fcbFRSetTransceiverState instead. 

 
 

This function sets the transceiver mode individually for each channel. 

fcError fcbSetTransceiverState ( 
fcHandle hFlexCard, 
fcTransceiverState stateChannelA, 
fcTransceiverState stateChannelB 

) 

Parameters 
hFlexCard 

[IN] Handle to a FlexCard 
stateChannelA 

[IN] The new transceiver state for channel A 
stateChannelB 

[IN] The new transceiver state for channel B 



 

 

Created by STAR ELECTRONICS GmbH & Co. KG   

Date created 2021-10-05 Date modified  2021-10-05 Page 226 of 250 
 

3-
00

0
9-

0
S

01
-D

0
3_

A
P

I 
D

oc
um

en
ta

ti
on

_D
2

V
5

-F
.d

oc
x 

 

Return values 
If the function succeeds, the return value is 0. If the value is <> 0, use the functions described in the section 
Error Handling to get extended error information. 

Remarks 
If one of the transceivers is in the sleep mode and the transceiver detects a wake-up event, the notification 
event fcNotificationTypeWakeup is fired once only. 

See 
fcTransceiverState, fcbMonitoringStart (Obsolete), fcbGetTransceiverState 
(Obsolete) 

16.10 fcbGetTransceiverState (Obsolete) 

 

Information 

This function is obsolete. Please use fcbFRGetTransceiverState instead. 

 
 

This function gets the transceiver state individually for each channel. 

fcError fcbGetTransceiverState ( 
fcHandle hFlexCard, 
fcTransceiverState* stateChannelA, 
fcTransceiverState* stateChannelB 

) 

Parameters 
hFlexCard 

[IN] Handle to a FlexCard 
stateChannelA 

[OUT] The current transceiver state for channel A 
stateChannelB 

[OUT] The current transceiver state for channel B 

Return values 
If the function succeeds, the return value is 0. If the value is <> 0, use the functions described in the section 
Error Handling to get extended error information. 

Remarks 
If one of the transceiver is in the sleep mode and the transceiver detects a wake-up event, the notification 
event fcNotificationTypeWakeup is fired once only. 

See 
fcTransceiverState, fcbMonitoringStart (Obsolete), fcbSetTransceiverState 
(Obsolete) 

16.11 fcbSetEventHandle (Obsolete) 

 

Information 

This function is obsolete. Please use fcbSetEventHandleV2 or 
fcbSetEventHandleSemaphore instead. 

 
 

This function registers an event handle for a specific notification type.  



 

 

Created by STAR ELECTRONICS GmbH & Co. KG   

Date created 2021-10-05 Date modified  2021-10-05 Page 227 of 250 
 

3-
00

0
9-

0
S

01
-D

0
3_

A
P

I 
D

oc
um

en
ta

ti
on

_D
2

V
5

-F
.d

oc
x 

 

fcError fcbSetEventHandle( 
fcHandle hFlexCard, 
fcHandle hEvent, 
fcNotificationType type 

) 

Parameters 
hFlexCard 

[IN] Handle to a FlexCard 
hEvent 

[IN] Event handle to be registered to signal when a new cycle starts, a timer interval has elapsed or 
the FlexCard receive buffer reaches a specific filling level depending on the given type. 

Type 
[IN] The notification type for which the event must be registered. 

Return values 
If the function succeeds, the return value is 0. If the value is <> 0, use the functions described in the section 
Error Handling to get extended error information. 

See Also 
fcNotificationType 

16.12 fcbTransmit (Obsolete) 

 

Information 

This function is obsolete. Please use fcbFRTransmit instead. 

 
 

This function writes a data frame into a Communication Controller transmit buffer of the FlexCard. The 
frame should normally be transmitted in the next cycle. If the transmit acknowledgment is activated, an 
acknowledge packet is generated as soon as the frame has been transmitted. This function should only be 
called when the FlexCard is in normal active state or when all message buffer configurations have been 
done.  

fcError fcbTransmit( 
fcHandle hFlexCard, 
fcDword bufferId, 
fcWord payload[], 
fcByte payloadLength 

); 

Parameters 
hFlexCard 

[IN] Handle to a FlexCard 
bufferId 

[IN] The id of the message buffer used for the transmission 
payload 

The payload data to be transmitted 
payloadLength 

The size of the payload data (number of 2-byte words) 

Return values 
If the function succeeds, the return value is 0. If the value is <> 0, use the functions described in the section 
Error Handling to get extended error information. 
The transmission may fail, if the buffer is currently in use (fcGetErrorCode returns MSG_BUFFER_BUSY). 
In that case retry later. 



 

 

Created by STAR ELECTRONICS GmbH & Co. KG   

Date created 2021-10-05 Date modified  2021-10-05 Page 228 of 250 
 

3-
00

0
9-

0
S

01
-D

0
3_

A
P

I 
D

oc
um

en
ta

ti
on

_D
2

V
5

-F
.d

oc
x 

 

Remarks  
The payload data has to be organized as follows: if Data0 is the first byte to transmit and Data1 the second 
byte to transmit, then the high byte (Bit 8 – 15) of payload[0] contains Data1, the low byte (Bit 0-7) of 
payload[0] contains Data0, etc. 

Parameter payload payload[0] (Word 0) payload[1] (Word 1) … 
High byte Low byte High byte Low byte … 

FlexRay payload segment Data 1 Data 0 Data 3 Data 2 … 

16.13 fcbTransmitSymbol (Obsolete) 

 

Information 

This function is obsolete. Please use fcbFRTransmitSymbol instead. 

 
 

This function transmits a symbol in the symbol window segment. It can only be called if the Communication 
Controller is in the POC state NORMAL_ACTIVE. For a list of available symbols to be transmitted, see the 
enumeration fcSymbolType. 

fcError fcbTransmitSymbol( 
fcHandle hFlexCard, 
fcSymbolType symbol 

); 

Parameters 
hFlexCard 

[IN] Handle to a FlexCard 
symbol 

[IN] Type of symbol to transmit 

Return values 
If the function succeeds, the return value is 0. If the value is <> 0, use the functions described in the section 
Error Handling to get extended error information. 

16.14 fcbSetCcRegister (Obsolete) 

 

Information 

This function is obsolete. Please use fcbFRSetCcRegister instead. 

 
 

This function writes a value in a given register of the Communication Controller. Not every register can be 
written (e.g. the registers belonging to the message buffer configuration or some interrupt settings). 

fcError fcbSetCcRegister( 
fcHandle hFlexCard, 
fcDword address, 
fcDword value 

) 

Parameters 
hFlexCard 

[IN] Handle to a FlexCard 
address 

[IN] Address of the CC register to be written 
value 

[IN] The value to be written 



 

 

Created by STAR ELECTRONICS GmbH & Co. KG   

Date created 2021-10-05 Date modified  2021-10-05 Page 229 of 250 
 

3-
00

0
9-

0
S

01
-D

0
3_

A
P

I 
D

oc
um

en
ta

ti
on

_D
2

V
5

-F
.d

oc
x 

 

Return values 
If the function succeeds, the return value is 0. If the value is <> 0, use the functions described in the section 
Error Handling to get extended error information. If the register can not be written the error code 
REGISTER_NOT_WRITEABLE is returned. 

Remarks 
For a register description, refer to the specification of the corresponding Communication Controller. 
Modifying one of the following registers will reset message buffers with their default settings (FIFO receive 
buffers). The user’s message buffers configuration will not be valid anymore. 
Bosch E-Ray: MHDC (0x0098) and GTUC7 (0x00B8) 
 

 

Information 

Not all registers of a Communication Controller can be set. The base API will modify some 
parameters so that the operation of the FlexCard is guaranteed (e.g. interrupt settings). Access is 
denied to all registers which are used for message buffer configuration. 

See Also 
fcbGetCcRegister (Obsolete) 

16.15 fcbGetCcRegister (Obsolete) 

 

Information 

This function is obsolete. Please use fcbFRGetCcRegister instead. 

 
 

This function reads and returns the content of a given register of the Communication Controller. 

fcError fcbGetCcRegister( 
fcHandle hFlexCard, 
fcDword  address, 
fcDword* pValue 

) 

Parameters 
hFlexCard 

[IN] Handle to a FlexCard 
address 

[IN] Address of the CC register to be read. 
pValue 

[OUT] The content of the desired CC register. 

Return values 
If the function succeeds, the return value is 0. If the value is <> 0, use the functions described in the section 
Error Handling to get extended error information. If the register cannot be read the error code 
REGISTER_NOT_READABLE is returned. 

Remarks 
Not every register can be read. For a register description, refer to the specification of the corresponding 
Communication Controller. 

See Also 
fcbSetCcRegister (Obsolete) 



 

 

Created by STAR ELECTRONICS GmbH & Co. KG   

Date created 2021-10-05 Date modified  2021-10-05 Page 230 of 250 
 

3-
00

0
9-

0
S

01
-D

0
3_

A
P

I 
D

oc
um

en
ta

ti
on

_D
2

V
5

-F
.d

oc
x 

 

16.16 fcbChiCcConfiguration (Obsolete) 

 

Information 

This function is obsolete. Please use fcbFRSetCcConfigurationChi instead. 

 
 

This function configures the Communication Controller of the FlexCard with a FlexConfig compatible 
configuration string (CHI File). The configuration string contains the global FlexRay parameter and/or the 
message buffer configuration. The payload data for transmit message buffers are not set by this function. 
Before the configuration of the Communication Controller starts, all message buffers are reset to their 
default settings (FIFO buffer). 

fcError fcbChiCcConfiguration( 
fcHandle hFlexCard,  
const char* szChi 

) 

Parameters 
hFlexCard 

[IN] Handle to a FlexCard. 
szChi 

[IN] Pointer to null-terminated CHI content string (refer to the CHI string example section). 
Please note: Do not use the CHI file name here, but the content of the CHI file as parameter value. 

Return values 
If the function succeeds, the return value is 0. If the value is <> 0, use the functions described in the section 
Error Handling to get extended error information. 
 

 

Information 

Internally, the function uses the function fcbSetCcRegister (Obsolete); therefore the same 
restrictions as for writing registers exist. 

 

See Also 
fcbSetCcRegister (Obsolete) 

16.17 fcbCanDbCcConfiguration (Obsolete) 

 

Information 

This function is obsolete. Please use fcbFRSetCcConfigurationCANdb instead. 

 
 

This function configures the FlexRay Communication Controller of the FlexCard with a proprietary string. 
The configuration string contains the global FlexRay parameter and/or the message buffer configuration. 
Before the configuration of the Communication Controller starts, all message buffers are reset to their 
default settings (FIFO buffer). Configuring the CAN CC with a CANdb file is not supported by the FlexCard 
driver. 

fcError fcbCanDbCcConfiguration( 
fcHandle hFlexCard,  
const char* szCanDb 

) 

Parameters 
hFlexCard 

[IN] Handle to a FlexCard 



 

 

Created by STAR ELECTRONICS GmbH & Co. KG   

Date created 2021-10-05 Date modified  2021-10-05 Page 231 of 250 
 

3-
00

0
9-

0
S

01
-D

0
3_

A
P

I 
D

oc
um

en
ta

ti
on

_D
2

V
5

-F
.d

oc
x 

 

szCanDb 
[IN] Pointer to null-terminated proprietary string 

Return values 
If the function succeeds, the return value is 0. If the value is <> 0, use the functions described in the section 
Error Handling to get extended error information. 

Remarks 
This function is only available in the Windows FlexCard driver. The FlexCard Linux and Xenomai drivers 
don’t support this function. 
 

 

Information 

Internally, the function uses the fcbSetCcRegister (Obsolete) function; therefore the same 
restrictions as for writing a register exist. 

 

16.18 fcbConfigureMessageBuffer (Obsolete) 

 

Information 

This function is obsolete. Please use fcbFRConfigureMessageBuffer instead. 

 
 

This function configures transmit, receive and FIFO message buffers of the Communication Controller. 
Configuring message buffers is only allowed if the Communication Controller is in its configuration state, 
fcStateConfig. 

fcError fcbConfigureMessageBuffer( 
fcHandle hFlexCard, 
fcDword* bufferId, 
fcMsgBufCfg cfg 

); 

Parameters 
hFlexCard 

[IN] Handle to a FlexCard 
bufferId 

[OUT] Message buffer identifier. If the configuration was successful the message buffer identifier is 
greater than 0. This identifier will be required to transmit the content of the buffer (in the case of a 
transmit buffer). 

Cfg 
[IN] Message buffer configuration parameters 

Return values 
If the function succeeds, the return value is 0. If the value is <> 0, use the functions described in the section 
Error Handling to get extended error information. 

Remarks 
Before configuring the message buffers, it is necessary to set up the global communication parameters 
(cluster parameters). Internally the FlexCard uses the FIFO buffers as receive buffers, therefore we 
recommend using FIFO message buffers as much as possible.  

See Also 
fcMsgBufCfg, fcMsgBufCfgTx, fcMsgBufCfgRx, fcMsgBufCfgFifo 



 

 

Created by STAR ELECTRONICS GmbH & Co. KG   

Date created 2021-10-05 Date modified  2021-10-05 Page 232 of 250 
 

3-
00

0
9-

0
S

01
-D

0
3_

A
P

I 
D

oc
um

en
ta

ti
on

_D
2

V
5

-F
.d

oc
x 

 

16.19 fcbReconfigureMessageBuffer (Obsolete) 

 

Information 

This function is obsolete. Please use fcbFRReconfigureMessageBuffer instead. 

 
 

This function reconfigures transmit, receive and FIFO message buffers of the Communication Controller. A 
reconfiguration is only allowed for message buffers which are already configured. This function is available 
in all states of the CC. Not all configuration settings can be modified in monitoring state. Refer to the 
documentation of the message buffer structures for further details. 

fcError fcbReconfigureMessageBuffer( 
fcHandle hFlexCard, 
fcDword bufferId, 
fcMsgBufCfg cfg 

) 

Parameters 
hFlexCard 

[IN] Handle to a FlexCard 
bufferId 

[IN] The identifier of the message buffer which should be reconfigured. 
Cfg 

[IN] Message buffer configuration parameters. 

Return values 
If the function succeeds, the return value is 0. If the value is <> 0, use the functions described in the section 
Error Handling to get extended error information. 

See Also 
fcMsgBufCfg, fcMsgBufCfgTx, fcMsgBufCfgRx, fcMsgBufCfgFifo, fcbConfigureMessageBuffer 
(Obsolete), fcbGetCcMessageBuffer (Obsolete) 

16.20 fcbGetCcMessageBuffer (Obsolete) 

 

Information 

This function is obsolete. Please use fcbFRGetMessageBuffer instead. 

 
 

This function reads a specific message buffer configuration. 

fcError fcbGetCcMessageBuffer( 
fcHandle hFlexCard, 
fcDword bufferId, 
fcMsgBufCfg* cfg 

) 

Parameters 
hFlexCard 

[IN] Handle to a FlexCard 
bufferId 

[IN] The identifier of the message buffer to be read 
cfg 

[OUT] The configuration parameters of the specified message buffer. 



 

 

Created by STAR ELECTRONICS GmbH & Co. KG   

Date created 2021-10-05 Date modified  2021-10-05 Page 233 of 250 
 

3-
00

0
9-

0
S

01
-D

0
3_

A
P

I 
D

oc
um

en
ta

ti
on

_D
2

V
5

-F
.d

oc
x 

 

Return values 
If the function succeeds, the return value is 0. If the value is <> 0, use the functions described in the section 
Error Handling to get extended error information. 

Remarks 
The buffer with id 1 is always a FIFO message buffer. 

See Also 
fcMsgBufCfg, fcMsgBufCfgTx, fcMsgBufCfgRx, fcMsgBufCfgFifo, fcbConfigureMessageBuffer 
(Obsolete) 

16.21 fcbResetCcMessageBuffer (Obsolete) 

 

Information 

This function is obsolete. Please use fcbFRResetMessageBuffers instead. 

 
 

This function resets the Communication Controller message buffers. After calling this function, all message 
buffers are configured as receive FIFO – with maximal payload (depends on the Communication Controller). 

fcError fcbResetCcMessageBuffer( 
fcHandle hFlexCard 

) 

Parameters 
hFlexCard 

[IN] Handle to a FlexCard 

Return values 
If the function succeeds, the return value is 0. If the value is <> 0, use the functions described in the section 
Error Handling to get extended error information. 

16.22 fcbFilter (Obsolete) 

 

Information 

This function is obsolete. Please use fcbFRSetSoftwareAcceptanceFilter or 
fcbFRSetHardwareAcceptanceFilter instead. 

 
 

This function configures the frame ids accepted by the device driver. Only the ids which are in the filter list 
are forwarded to the user application, all other frames are rejected. To accept all frames set the 
parameters pData to NULL and nSize to zero or configure a single frame id of zero. 

fcError fcbFilter( 
fcHandle hFlexCard, 
fcChannel channel, 
fcDword* pData, 
fcDword size 

) 

Parameters 
hFlexCard 

[IN] Handle to a FlexCard 
channel 

[IN] FlexCard channel(s) concerned by the filter 



 

 

Created by STAR ELECTRONICS GmbH & Co. KG   

Date created 2021-10-05 Date modified  2021-10-05 Page 234 of 250 
 

3-
00

0
9-

0
S

01
-D

0
3_

A
P

I 
D

oc
um

en
ta

ti
on

_D
2

V
5

-F
.d

oc
x 

 

pData 
[IN] Pointer to a fcDword array containing the ids accepted by the device driver. Each element 
(fcDword) contains one frame identifier.  

fcDword fcDword 
ID x ID y 

size 
[IN] Number of ids in the array 

Return values 
If the function succeeds, the return value is 0. If the value is <> 0, use the functions described in the section 
Error Handling to get extended error information. 

16.23 fcbSetCcTimerConfig (Obsolete) 

 

Information 

This function is obsolete. Please use fcbFRSetCcTimerConfig instead. 

 
 

This function configures the Communication Controller timer interrupt. To get a notification when the 
Communication Controller timer interval elapsed, an event of type fcNotificationTypeCcTimer has 
to be registered by the function fcbSetEventHandle (Obsolete). Additionally, the Communication 
Controller timer can be enabled / disabled by this function. 

fcError fcbSetCcTimerConfig( 
fcHandle hFlexCard, 
fcCcTimerCfg cfg, 
fcBool bEnable 

) 

Parameters 
hFlexCard 

[IN] Handle to a FlexCard. 
Cfg 

[IN] The Communication Controller timer configuration. 
bEnable 

[IN] Set to <> 0 to enable the CC timer, and to 0 to disable it. 

Return values 
If the function succeeds, the return value is 0. If the value is <> 0, use the functions described in the section 
Error Handling to get extended error information. 

See Also 
fcbSetEventHandle (Obsolete), fcCcTimerCfg, fcbGetCcTimerConfig (Obsolete) 

16.24 fcbGetCcTimerConfig (Obsolete) 

 

Information 

This function is obsolete. Please use fcbFRGetCcTimerConfig instead. 

 
 

This function reads the Communication Controller timer configuration. 



 

 

Created by STAR ELECTRONICS GmbH & Co. KG   

Date created 2021-10-05 Date modified  2021-10-05 Page 235 of 250 
 

3-
00

0
9-

0
S

01
-D

0
3_

A
P

I 
D

oc
um

en
ta

ti
on

_D
2

V
5

-F
.d

oc
x 

 

fcError fcbGetCcTimerConfig( 
fcHandle hFlexCard, 
fcCcTimerCfg* pCfg 

) 

Parameters 
hFlexCard 

[IN] Handle to a FlexCard. 
pCfg 

[OUT] The configuration parameters of the CC timer. 

Return values 
If the function succeeds, the return value is 0. If the value is <> 0, use the functions described in the section 
Error Handling to get extended error information. 

See Also 
fcCcTimerCfg, fcbSetCcTimerConfig (Obsolete) 

16.25 fcbCalculateMacrotickOffset (Obsolete) 

 

Information 

This function is obsolete. Please use fcbFRCalculateMacrotickOffset instead. 

 
 

This function calculates the macrotick offset for a specific cycle position in a FlexRay cycle. 

fcError fcbCalculateMacrotickOffset( 
fcHandle hFlexCard, 
fcCyclePos CyclePosition, 
fcDword SlotOrMiniSlotId, 
fcDword* pValue 

) 

Parameters 
hFlexCard 

[IN] Handle to a FlexCard. 
CyclePosition 

[IN] The cycle position of type fcCyclePos. 
SlotOrMiniSlotId 

[IN] This parameter is used for a cycle position of fcCyclePosStaticSlot and 
fcCyclePosDynamicMiniSlot to calculate the macrotick offset for a static slot or a dynamic 
mini slot id. 

pValue 
[OUT] The macrotick offset value. 

Return values 
If the function succeeds, the return value is 0. If the value is <> 0, use the functions described in the section 
Error Handling to get extended error information. 

See Also 
fcCyclePos, fcCcTimerCfg, fcbSetCcTimerConfig (Obsolete) 



 

 

Created by STAR ELECTRONICS GmbH & Co. KG   

Date created 2021-10-05 Date modified  2021-10-05 Page 236 of 250 
 

3-
00

0
9-

0
S

01
-D

0
3_

A
P

I 
D

oc
um

en
ta

ti
on

_D
2

V
5

-F
.d

oc
x 

 

16.25.1 Trigger Configuration (Obsolete) 

 

Information 

This configuration is obsolete. Please see fcTriggerConfigurationEx instead. 

 
 

If the FlexCard is equipped with a trigger interface, the FlexCard has the ability to receive trigger events 
and forward them to the user application. This feature allows e.g. a synchronization of different bus 
236ehavior. To configure and activate this feature, use the following structures and functions. The trigger 
event data is received as fcTriggerInfoPacket (Obsolete) with the fcbReceive function. 

 

Figure 16: Overview obsolete structure fcbTriggerCfg 

16.26 Typedefinitions (Obsolete) 

16.26.1 fcTriggerCfgHardware (Obsolete) 

This structure configures the hardware trigger. In the passive mode, the FlexCard waits for trigger events 
on its input line and generates a fcTriggerInfoPacket (Obsolete) object each time a trigger event is 
received. In this mode, the parameter Condition specifies on which condition the input signal will be 
recognized as a trigger event. In the active mode, the FlexCard generates a pulse on its output line when a 
trigger event is236onsultad. In this mode, the parameter Condition specifies on which condition a pulse 
will be generated by the FlexCard. For information about the pin assignment of the input and output line, 
refer to the user manual of the FlexCard. 



 

 

Created by STAR ELECTRONICS GmbH & Co. KG   

Date created 2021-10-05 Date modified  2021-10-05 Page 237 of 250 
 

3-
00

0
9-

0
S

01
-D

0
3_

A
P

I 
D

oc
um

en
ta

ti
on

_D
2

V
5

-F
.d

oc
x 

 

Typedef struct fcTriggerCfgHardware 
{ 
 fcTriggerMode Mode;  
 fcTriggerCondition Condition;  
}fcTriggerCfgHardware; 

Members 
Mode 

Set the trigger mode (active or passive mode). The hardware trigger does not support the timer 
mode. 

fcTriggerCondition 
Depending on the mode, the following conditions can be used: 

• Passive mode:  
- Falling edge (Trigger packet is generated on falling edge of the input signal) 
- Rising edge (Trigger packet is generated on rising edge of the input signal) 

• Active mode:   
- Cycle start (A pulse is generated on the output line when a new cycle starts) 
- User (A pulse is generated on the output line when the user is calling the function 

fcbTrigger) 
- Error (A pulse is generated on the output line when an error occurred) 
- Start-up completed (A pulse is generated on the output line when the start-up was 

completed) 

See Also 
fcTriggerCfg (Obsolete), fcTriggerCondition (Obsolete), fcTriggerMode (Obsolete) 

16.26.2 fcTriggerCfgSoftware (Obsolete) 

This structure configures the software trigger. In active mode an fcTriggerInfoPacket (Obsolete) 
object is generated each time the function fcbTrigger (Obsolete) is called. In the timer mode an 
fcTriggerInfoPacket (Obsolete) object is generated every TimePeriod millisecond. A zero 
TimePeriod means that no fcTriggerInfoPacket (Obsolete) will be generated.  

Typedef struct fcTriggerCfgSoftware 
{ 
 fcTriggerMode Mode; 
 fcDword  TimePeriod; 
}fcTriggerCfgSoftware; 

Members 
Mode 

Set the trigger mode (active or timer mode). The software trigger does not support the passive mode. 
TimePeriod 

This parameter is only used in timer mode. Every TimePeriod milliseconds (range: 0 – 400000) a 
trigger packet will be generated.  

See Also 
fcTriggerCfg (Obsolete), fcTriggerMode (Obsolete) 

16.26.3 fcTriggerCfg (Obsolete)  

This structure is used for the configuration of a trigger. Only one trigger at a time (hardware or software) 
can be used and the conditions cannot be combined. 



 

 

Created by STAR ELECTRONICS GmbH & Co. KG   

Date created 2021-10-05 Date modified  2021-10-05 Page 238 of 250 
 

3-
00

0
9-

0
S

01
-D

0
3_

A
P

I 
D

oc
um

en
ta

ti
on

_D
2

V
5

-F
.d

oc
x 

 

Typedef struct fcTriggerCfg 
{ 
    fcTriggerType Type;  
    union 
    { 
        fcTriggerCfgHardware Hardware; 
        fcTriggerCfgSoftware Software; 
    }; 
}fcTriggerCfg; 

Members 
Type 

Type of trigger (hardware or software) 
Hardware 

Configuration of hardware trigger 
Software 

Configuration of software trigger 

See Also 
fcTriggerType (Obsolete), fcTriggerCfgHardware (Obsolete), fcTriggerCfgSoftware 
(Obsolete), fcbTrigger (Obsolete) 

16.26.4 fcTriggerInfoPacket (Obsolete) 

This structure provides information about a trigger packet.  

Typedef struct fcTriggerInfoPacket 
{ 
    fcTriggerType Type; 
    fcTriggerCondition Condition; 
    fcDword TimeStamp; 
    fcDword SequenceCount; 
    fcQuad PerformanceCounter; 
 
}fcTriggerInfoPacket; 

Members 
Type 

Type of trigger info packet 
Condition 

The fulfilled condition which has caused the trigger packet generation 
TimeStamp 

The FlexCard time stamp (1 µs resolution). Indicates the time at which the packet was generated. 
SequenceCount 

Sequence count for each signal 
PerformanceCounter 

Variable that receives the current performance-counter value. This value is only valid for software 
triggers (fcTriggerTypeSoftware). 

See Also 
fcPacket, fcTriggerType (Obsolete), fcTriggerCondition (Obsolete) 

16.27 Enumerations (Obsolete) 

16.27.1 fcTriggerCondition (Obsolete) 

This enumeration defines the conditions available for a trigger configuration. 



 

 

Created by STAR ELECTRONICS GmbH & Co. KG   

Date created 2021-10-05 Date modified  2021-10-05 Page 239 of 250 
 

3-
00

0
9-

0
S

01
-D

0
3_

A
P

I 
D

oc
um

en
ta

ti
on

_D
2

V
5

-F
.d

oc
x 

 

Typedef enum fcTriggerCondition 
{ 
 fcTriggerConditionFallingEdge  = 1, 
 fcTriggerConditionRisingEdge  = 2, 
 fcTriggerConditionCycleStart  = 3, 
 fcTriggerConditionUser   = 4, 
 fcTriggerConditionErrorDetected  = 5, 
 fcTriggerConditionStartupCompleted = 6, 
 fcTriggerConditionTimer   = 7, 
}fcTriggerEdge; 

Members 
fcTriggerConditionFallingEdge 

Passive mode condition: input trigger is detected on falling edge 
fcTriggerConditionRisingEdge  

Passive mode condition: input trigger is detected on rising edge 
fcTriggerConditionCycleStart 

Active mode condition: output trigger is set on start of a new FlexRay cycle 
fcTriggerConditionUser 

Active mode condition: output trigger is set by the user 
fcTriggerConditionErrorDetected 

Active mode condition: output trigger is set if an error was detected 
fcTriggerConditionStartupCompleted 

Active mode condition: output trigger is set when the start-up was completed 
fcTriggerConditionTimer 

Timer mode condition: Internal trigger is set by the software timer (neither input nor output trigger 
signal is used) 

See Also 
fcTriggerCfgHardware (Obsolete) 

16.27.2 fcTriggerType (Obsolete) 

This enumeration defines the different trigger types. 

Typedef enum fcTriggerType 
{ 
    fcTriggerTypeHardware   = 1, 
    fcTriggerTypeSoftware   = 2, 
} fcTriggerType; 

Members 
fcTriggerTypeHardware  

Hardware trigger 
fcTriggerTypeSoftware  

Software trigger 

See Also 
fcTriggerCfg (Obsolete) 

16.27.3 fcTriggerMode (Obsolete) 

This enumeration defines the different trigger modes. 



 

 

Created by STAR ELECTRONICS GmbH & Co. KG   

Date created 2021-10-05 Date modified  2021-10-05 Page 240 of 250 
 

3-
00

0
9-

0
S

01
-D

0
3_

A
P

I 
D

oc
um

en
ta

ti
on

_D
2

V
5

-F
.d

oc
x 

 

Typedef enum fcTriggerMode 
{ 
    fcTriggerModeActive  = 1, 
    fcTriggerModePassive = 2, 
    fcTriggerModeTimer   = 3, 
}fcTriggerMode; 

Members 
fcTriggerModeActive   

Active mode: triggered by FlexCard or by user 
fcTriggerModePassive 

Passive mode: triggered by external hardware 
fcTriggerModeTimer 

Timer mode: triggered by software timer. 

See Also 
fcTriggerCfgHardware (Obsolete), fcTriggerCfgSoftware (Obsolete) 

16.28 fcbTrigger (Obsolete) 

This function configures and starts/stops a trigger. For further information, refer to the structures 
fcTriggerCfgSoftware and fcTriggerCfgHardware. 

fcError fcbTrigger( 
fcHandle hFlexCard, 
fcBool enable, 
fcTriggerCfg cfg 

) 

Parameters 
hFlexCard 

[IN] Handle to a FlexCard 
enable 

[IN] Set to <> 0 to enable the trigger, and to 0 to disable it. 
Cfg 

[IN] The trigger configuration 

Return values 
If the function succeeds, the return value is 0. If the value is <> 0, use the functions described in the section 
Error Handling to get extended error information. 

See Also 
fcTriggerCfg (Obsolete) 

16.29 fcbSetCcIndex (Obsolete) 

 

Information 

This function is obsolete. Please use the functions in chapter 5 and 6 instead and specify the 
Communication Controller as parameter. 
 

 
This function sets the FlexRay Communication Controller index. Following functions refer to the 
Communication Controller that was set. This function was only available on FlexCard PMC. 



 

 

Created by STAR ELECTRONICS GmbH & Co. KG   

Date created 2021-10-05 Date modified  2021-10-05 Page 241 of 250 
 

3-
00

0
9-

0
S

01
-D

0
3_

A
P

I 
D

oc
um

en
ta

ti
on

_D
2

V
5

-F
.d

oc
x 

 

fcError fcbSetCcIndex ( 
 fcHandle hFlexCard, 
 fcCC     CCIndex 
) 

Parameters 
hFlexCard 

[IN] Handle to a FlexCard 
CCIndex 

[IN] The FlexRay Communication Controller to be set. 

Return values 
If the function succeeds, the return value is 0. If the value is <> 0, use the functions described in the section 
Error Handling to get extended error information. 

See Also 
fcCC 

Remarks 
The table below gives an overview of the functions which are CC specific. 

CC specific functions CC global functions 
fcbMonitoringStart (Obsolete) fcGetErrorCode 
fcbMonitoringStop (Obsolete) fcGetErrorType 
fcbGetCcState (Obsolete) fcGetErrorText 
fcbSetTransceiverState (Obsolete) fcFreeMemory 
fcbGetTransceiverState (Obsolete) fcbGetEnumFlexCards (Obsolete) 
fcbSetCcRegister (Obsolete) fcbOpen  
fcbGetCcRegister (Obsolete) fcbClose 
fcbChiCcConfiguration (Obsolete) fcbSetTrigger 
fcbCanDbCcConfiguration (Obsolete) fcbSetTimer 
fcbConfigureMessageBuffer (Obsolete) fcbNotificationPacket 
fcbReconfigureMessageBuffer 
(Obsolete) 

fcbReceive 

fcbGetCcMessageBuffer (Obsolete) fcbSetBusTermination 
fcbResetCcMessageBuffer (Obsolete) fcbGetBusTermination 
fcbFilter (Obsolete) fcbGetEnumFlexCardsV2 (Obsolete) 
fcbSetEventHandle (Obsolete)  
fcbTransmit (Obsolete)  
fcbTransmitSymbol (Obsolete)  
fcbSetCcTimerConfig (Obsolete)  
fcbGetCcTimerConfig (Obsolete)  
fcbCalculateMacrotickOffset 
(Obsolete) 

 

16.30 fcbGetCcIndex (Obsolete) 

 

Information 

This function is obsolete. Please use the functions in chapter 5 and 6 instead and specify the 
Communication Controller as parameter. 
 

 
This function reads the index of the set FlexRay Communication Controller. Communication controller 
dependent functions refer to this Communication Controller only. This function was only available on 
FlexCard PMC. 



 

 

Created by STAR ELECTRONICS GmbH & Co. KG   

Date created 2021-10-05 Date modified  2021-10-05 Page 242 of 250 
 

3-
00

0
9-

0
S

01
-D

0
3_

A
P

I 
D

oc
um

en
ta

ti
on

_D
2

V
5

-F
.d

oc
x 

 

fcError fcbGetCcIndex ( 
 fcHandle hFlexCard, 
 fcCC *   pCCIndex 
) 

Parameters 
hFlexCard 

[IN] Handle to a FlexCard 
pCCIndex 

[OUT] The FlexRay Communication Controller which is currently set. 

Return values 
If the function succeeds, the return value is 0. If the value is <> 0, use the functions described in the section 
Error Handling to get extended error information. 

See Also 
fcbSetCcIndex (Obsolete), fcCC 

16.31 fcbFRSetCcConfigurationCANdb (Obsolete)  

 

Information 

This function is obsolete. 
 

 

This function configures the FlexRay Communication Controller of the FlexCard with a proprietary string. 
The configuration string contains the global FlexRay parameter and/or the message buffer configuration. 
Before the configuration of the Communication Controller starts, all message buffers are reset to their 
default settings (FIFO buffer). Configuring the CAN CC with a CANdb file is not supported by the FlexCard 
driver. 

fcError fcbFRSetCcConfigurationCANdb( 
fcHandle hFlexCard, 
fcCC CC,  
const char* szCanDb 

) 

Parameters 
hFlexCard 

[IN] Handle to a FlexCard 
CC 

[IN] Communication controller index 
szCanDb 

[IN] Pointer to null-terminated proprietary string 

Return values 
If the function succeeds, the return value is 0. If the value is <> 0, use the functions described in the section 
Error Handling to get extended error information. 

Remarks 
This function is only available in the Windows FlexCard driver. The FlexCard Linux and Xenomai drivers 
don’t support this function. 
 

 

Information 

Internally, the function uses the fcbFRSetCcRegister function; therefore the same restrictions 
as for writing a register exist. 

 
 



 

 

Created by STAR ELECTRONICS GmbH & Co. KG   

Date created 2021-10-05 Date modified  2021-10-05 Page 243 of 250 
 

3-
00

0
9-

0
S

01
-D

0
3_

A
P

I 
D

oc
um

en
ta

ti
on

_D
2

V
5

-F
.d

oc
x 

 

17 Power Management 

17.1 Windows 

When the PC enters standby or hibernation, the current FlexCard measurement is stopped automatically. 
After standby the handle to the driver is not valid anymore. On resume, developers should call fcbClose, 
fcbGetEnumFlexCardsV3, fcbOpen to initialize the FlexCard again. 

Applications have the possibility to react to standby or resume with the Windows message 
WM_POWERBROADCAST containing the events PBT_APMSUSPEND and PBT_APMRESUMESUSPEND. 

Developers should inform the user under Windows Vista and later that standby and hibernation stops the 
current monitoring. Users have the possibility to deactivate the automatic standby in the control panel. 

Developers may consider deactivating idle recognition with the Windows command 
SetThreadExecutionState() to prohibit automatic stand-by. However, manual switching to stand-by 
can not be prevented under Windows Vista and later. 

17.2 Linux 

 

Information 

Please note: Under Linux, Power Management is not supported. Please deactivate kernel power 
management options to avoid undefined behavior with the FlexCard Linux and Xenomai driver. 

 



 

 

Created by STAR ELECTRONICS GmbH & Co. KG   

Date created 2021-10-05 Date modified  2021-10-05 Page 244 of 250 
 

3-
00

0
9-

0
S

01
-D

0
3_

A
P

I 
D

oc
um

en
ta

ti
on

_D
2

V
5

-F
.d

oc
x 

 

18 Tracing 

18.1 Overview 

The tracing module allows the user to get more information about the fcBase.dll (Windows only) activity 
(e.g. in the case of an error). 

The tracing consists of three parts:  

• The tracing module inside the fcBase dynamic link library. This module will send the trace messages 
to a debugger for displaying (using the windows function OutputDebugString). 

• The tracing control application to choose the tracing level. 
• A debug output viewer (e.g. DebugView from SysInternals) to view the trace messages. If you are 

debugging your own application, the messages appear normally in the debug output window of your 
IDE. 

The followings tracing levels are available: 

• Debug: all trace messages will be shown. 
• Info: info and warning messages will be shown. 
• Warn: only warning messages will be shown. 
• Error: only error messages will be shown. 
• Fatal: only fatal error message will be shown. 
• None: tracing messages will not be generated. 

To use the tracing the following steps are required: 

 

Step 1 
Start the tracing control application 
(fcTracerControl.exe) 
 

 
 

Step 2 
Start the debug output viewer (DebugView.exe) 
 
 

 
 

http://www.sysinternals.com/utilities/debugview.html


 

 

Created by STAR ELECTRONICS GmbH & Co. KG   

Date created 2021-10-05 Date modified  2021-10-05 Page 245 of 250 
 

3-
00

0
9-

0
S

01
-D

0
3_

A
P

I 
D

oc
um

en
ta

ti
on

_D
2

V
5

-F
.d

oc
x 

 

Step 3 
Start your application. In our case we use the 
demo application (fcDemo.exe). Now, the 
tracing level should be selectable. 

 
 

Step 4 
Activate the tracing by choosing a tracing level 
different of None (e.g. Debug). Use your 
application and view the trace messages. 

 
 

18.2 Limitation 

The tracing module inside the fcBase DLL will update the new tracing level only by calling the following 
functions:  

fcbGetEnumFlexCards (Obsolete) 
fcbGetEnumFlexCardsV2 (Obsolete) 
fcbGetEnumFlexCardsV3 
fcbOpen 
fcbClose 

 

That means a level modification by the tracing control application will only be passed to the tracing module 
inside the fcBase.dll if one of the above functions is called. 

This limitation ensures that performance critical functions such as fcbReceive or fcbTransmit are not 
delayed. 



 

 

Created by STAR ELECTRONICS GmbH & Co. KG   

Date created 2021-10-05 Date modified  2021-10-05 Page 246 of 250 
 

3-
00

0
9-

0
S

01
-D

0
3_

A
P

I 
D

oc
um

en
ta

ti
on

_D
2

V
5

-F
.d

oc
x 

 

19 Appendix 

19.1 Bibliography 

[1] FlexCard Cyclone II (SE) Instruction for Use (3-0009-0T01-D01) 
[2] MSDN: Dynamic-Link Library Search Order 
[3] FlexRay Protocol Specification V2.1 Rev. A 
[4] FlexRay Electrical Physical Layer Specification V2.1 Rev. A 
[5] Bosch E-Ray FlexRay IP-Module User’s Manual 
[6] CAN Specification 2.0 Part A (Base frame format) 
[7] CAN Specification 2.0 Part B (Base and extended frame format) 
[8] FlexConfig_RBS_UserManual (3-0016-0Q01-D04) 

19.2 Abbreviations 

Abbreviations Definition 
API Programming Interface 
DLL Dynamic Link Library 
IDE Integrated Development Environment 
PDF Portable Document Format 
SYS System device driver 
MFC Microsoft Foundation Class 
CC Communication controller 
PMC PCI Mezzazine Card 
LKM Loadable kernel module (for Linux OS) 
LIB Library (shared object file) 
USB Universal Serial Bus 
PCB Printed Circuit Board 

19.3 Glossary 

Term Description 
INF File A text-based file containing information required by the system to install a 

device’s software components 
MFC C++ Application framework for programming in Microsoft Windows 
Qt C++ Application framework for programming platform independent 

applications 
Cluster Network topology 
CHI  File that configures a Communication Controller 
CANdb File that configures a Communication Controller 

19.4 List of Figures 

 
Figure 1: Overview of a typical FlexCard system with hardware and software ...................................................... 16 
Figure 2: fcBase API groups ................................................................................................................................ 17 
Figure 3: FlexCard directory structure ................................................................................................................. 29 
Figure 4: Integration under Microsoft Visual Studio 2010 .................................................................................... 31 
Figure 5: Using the variable FLEXCARD_INC under Microsoft Visual Studio 2010 (Compiler) ............................... 32 
Figure 6: Using the variable FLEXCARD_INC under Microsoft Visual Studio 2010 (Linker) ................................... 33 

http://msdn.microsoft.com/en-us/library/windows/desktop/ms682586%28v=vs.85%29.aspx
http://www.bosch-semiconductors.de/en/automotive_electronics/ip_modules/flexray_ip_module/in_vehicle_communication_3.html


 

 

Created by STAR ELECTRONICS GmbH & Co. KG   

Date created 2021-10-05 Date modified  2021-10-05 Page 247 of 250 
 

3-
00

0
9-

0
S

01
-D

0
3_

A
P

I 
D

oc
um

en
ta

ti
on

_D
2

V
5

-F
.d

oc
x 

 

Figure 7: Typical FlexCard workflow .................................................................................................................... 35 
Figure 8: The device configuration in FlexConfig RBS and the mapping to the fcBase bus type and cc index. ....... 42 
Figure 9: Typical FlexRay function workflow ...................................................................................................... 104 
Figure 10: Overview fcbMsgBufCfg structure .................................................................................................... 111 
Figure 11: Typical CAN function workflow ......................................................................................................... 144 
Figure 12: Typical CAN-FD function workflow .................................................................................................... 164 
Figure 13: FlexCard PMC front panel ................................................................................................................ 192 
Figure 14: FlexCard PMC-II front panel ............................................................................................................. 192 
Figure 15: Example for a FlexRay offset synchronization ................................................................................... 200 
Figure 16: Overview obsolete structure fcbTriggerCfg ....................................................................................... 236 

19.5 Index 

Byte order  141, 182, 228 
CAN enumerations 

fcCANBufCfgRxAllCondition  149 
fcCANBufCfgType  148, 172 
fcCANCcState  145 
fcCANFDFrameFormat  165 
fcCANMonitoringMode  145 

CAN functions 
fcbCANFDSetCcConfiguration  167 
fcbCANFDTransmit  169 
fcbCANGetCcState  148 
fcbCANGetMessageBuffer  156 
fcbCANGetTxFifoConfiguration  158 
fcbCANMonitoringStart  146 
fcbCANMonitoringStop  147 
fcbCANSetCcConfiguration  155 
fcbCANSetMessageBuffer  156 
fcbCANSetTxFifoConfiguration  157 
fcbCANTransmit  160 
fcbCANTxFifoReset  159 
fcbCANTxFifoTransmit  161 

CAN structures 
fcCANBufCfg  153 
fcCANBufCfgRemoteRx  151 
fcCANBufCfgRemoteTx  152 
fcCANBufCfgRx  150 
fcCANBufCfgRxAll  149 
fcCANBufCfgTx  150 
fcCANCcBitTime  166 
fcCANCcConfig  153, 173 
fcCANFDCcConfig  166 
fcCANFDTxFrame  169 

CAN workflow  143 
CAN-FD workflow  163 
Error codes  44 
Ethernet enumerations 

fcEthMonitoringMode  171 
Ethernet functions 

fcbEthMonitoringStart  171 
fcbEthMonitoringStop  172, 175, 177 

Example  36 
Firmware functions 

fcbFWGetImageInfo  194 
fcbFWSelectImage  195 

Firmware structures 
fcFWInfo  194 

FlexRay constants 
fcPayloadMaximum  111 

FlexRay enumerations 
fcChannel  112 
fcCyclePos  115 
fcFRBaudRate  113 
fcFRMsgBufCfgMode  113 
fcMonitoringModes  105 
fcMsgBufTxMode  115 
fcMsgBufType  114 
fcState  106 
fcSymbolType  140 
fcTransceiverState  113 
fcWakeupStatus  112 

FlexRay functions 
fcbFRCalculateMacrotickOffset  139 
fcbFRConfigureMessageBuffer  131 
fcbFRGetCcConfiguration  130 
fcbFRGetCcRegister  127 
fcbFRGetCcState  109 
fcbFRGetCcTimerConfig  138 
fcbFRGetMessageBuffer  133 
fcbFRGetTransceiverState  110 
fcbFRMonitoringStart  106 
fcbFRMonitoringStop  108 
fcbFRReconfigureMessageBuffer  133 
fcbFRResetMessageBuffers  134 
fcbFRSetCcConfiguration  128 
fcbFRSetCcConfigurationCANdb  242 
fcbFRSetCcConfigurationChi  128 
fcbFRSetCcRegister  126 
fcbFRSetCcTimerConfig  138 
fcbFRSetHardwareAcceptanceFilter  135 
fcbFRSetHardwareTransmitFilter  137 



 

 

Created by STAR ELECTRONICS GmbH & Co. KG   

Date created 2021-10-05 Date modified  2021-10-05 Page 248 of 250 
 

3-
00

0
9-

0
S

01
-D

0
3_

A
P

I 
D

oc
um

en
ta

ti
on

_D
2

V
5

-F
.d

oc
x 

 

fcbFRSetMsgBufCfgMode  131 
fcbFRSetSoftwareAcceptanceFilter  134 
fcbFRSetTransceiverState  109 
fcbFRTransmit  141 
fcbFRTransmitSymbol  142 

FlexRay structures 
fcCcTimerCfg  126 
fcFRCcConfig  116 
fcMsgBufCfg  124 
fcMsgBufCfgFifo  121 
fcMsgBufCfgRx  122 
fcMsgBufCfgTx  123 

FlexRay workflow  103 
Function availability  17 
General enumerations 

fcBusType  49 
fcCANErrorType  99 
fcCC  49 
fcCCType  50 
fcConnector  53 
fcErrorCode  44 
fcErrorPacketFlag  97 
fcErrorType  45 
fcEthernetErrorType  100, 136 
fcFlexCardDeviceId  50 
fcMemoryType  47 
fcNotificationType  76 
fcNotifyType  76 
fcPacketType  96 
fcStatusPacketFlag  98 
fcTimeStampSourceMode  70 
fcTinyType  52 

General functions 
fcbCheckVersion  63 
fcbClose  65 
fcbConfigureFlexCardTimeStamp  74 
fcbGetCurrentHighResTimeStamp  75 
fcbGetCurrentTimeStamp  73 
fcbGetEnumFlexCardsV3  62 
fcbGetInfoFlexCard  65 
fcbGetNumberCcs  72 
fcbGetTinyInfo  68 
fcbGetUserDefinedCardId  67 
fcbNotificationPacket  78 
fcbOpen  64 
fcbReceive  100 
fcbReinitializeCcMessageBuffer  71 
fcbResetTimestamp  74 
fcbSetContinueOnPacketOverflow  73 
fcbSetEventHandleV2  76 
fcbSetReceiveBufferLevelNotification  79 
fcbSetTimer  78 
fcbSetUserDefinedCardId  66 
fcFreeMemory  47 
fcGetErrorCode  45 
fcGetErrorText  46 

fcGetErrorType  45 
General structures 

fcCANErrorPacket  91 
fcCANFDErrorPacket  93 
fcCANFDPacket  91 
fcCANPacket  89 
fcErrClockCorrectionFailureInfo  85 
fcErrorPacket  86 
fcErrPOCErrorModeChangedInfo  84 
fcErrSlotInfo  85 
fcErrSyncFramesInfo  84 
fcEthernetErrorPacket  94 
fcEthernetPacket  93 
fcFlexRayFrame  80 
fcInfoHw  59 
fcInfoHwSw  61 
fcInfoPacket  80 
fcInfoSw  60 
fcNMVectorPacket  87 
fcNotificationPacket  88 
fcNumberCC  56 
fcPacket  94 
fcStatusPacket  87 
fcStatusWakeupInfo  86 
fcTimeStampCfg  70 
fcTinyInfo  61 
fcTinyInfoCollection  62 
fcTriggerExInfoPacket  89 
fcTxAcknowledgePacket  82 
fcVersionCC  57 
fcVersionNumber  58 

General type definitions 
fcBool  48 
fcByte  48 
fcDword  48 
fcError  44 
fcHandle  48 
fcQuad  48 
fcWord  48 

ID  81, 150, 210 
Installation  29 
Integration  31, 36 
Linux 

Integration  196 
Memory handling  47 
Multithreading  34 
NFI  81, 83, 210, 212 
Obsolete 

fcbCalculateMacrotickOffset(Obsolete)  235 
fcbCanDbCcConfiguration (Obsolete)  230 
fcbChiCcConfiguration (Obsolete)  230 
fcbConfigureMessageBuffer (Obsolete)  231 
fcbFilter (Obsolete)  233 
fcbGetCcIndex (Obsolete)  241 
fcbGetCcMessageBuffer (Obsolete)  232 
fcbGetCcRegister (Obsolete)  229 



 

 

Created by STAR ELECTRONICS GmbH & Co. KG   

Date created 2021-10-05 Date modified  2021-10-05 Page 249 of 250 
 

3-
00

0
9-

0
S

01
-D

0
3_

A
P

I 
D

oc
um

en
ta

ti
on

_D
2

V
5

-F
.d

oc
x 

 

fcbGetCcState (Obsolete)  225 
fcbGetCcTimerConfig (Obsolete)  234 
fcbGetEnumFlexCards (Obsolete)  222 
fcbGetEnumFlexCardsV2 (Obsolete)  222 
fcbGetTransceiverState (Obsolete)  226 
fcbMonitoringStart (Obsolete)  223 
fcbMonitoringStop (Obsolete)  224 
fcbReconfigureMessageBuffer (Obsolete)  232 
fcbResetCcMessageBuffer (Obsolete)  233 
fcbSetCcIndex (Obsolete)  240 
fcbSetCcRegister (Obsolete)  228 
fcbSetCcTimerConfig (Obsolete)  234 
fcbSetEventHandle (Obsolete)  226 
fcbSetTransceiverState (Obsolete)  225 
fcbTransmit (Obsolete)  227 
fcbTransmitSymbol (Obsolete)  228 
fcbTrigger (Obsolete)  240 
fcbWaitForEvent (Xenomai, Obsolete)  201 
fcInfo (Obsolete)  220 
fcInfoV2 (Obsolete)  220 
fc–riggerType (Obsolete)  239 
fcTriggerCfg (Obsolete)  237 
fcTriggerCfgHardware (Obsolete)  236 
fcTriggerCfgSoftware (Obsolete)  237 
fcTriggerCondition (Obsolete)  238 
fcTriggerInfoPacket (Obsolete)  238 
fcTriggerMode(Obsolete)  239 
fcVersion (Obsolete)  221 

Packet Types 
fcCANErrorPacket  91 
fcCANFDErrorPacket  93 
fcCANFDPacket  91 
fcCANPacket  89 
fcErrorPacket  86 
fcEthernetErrorPacket  94 
fcEthernetPacket  93 
fcFlexRayFrame  80 
fcInfoPacket  80 
fcNMVectorPacket  87 
fcNotificationPacket  88 
fcPacket  94 
fcStatusPacket  87 
fcTriggerExInfoPacket  89 
fcTxAcknowledgePacket  82 

Power management  243 
SelfSynchronization functions 

fcbConfigureMessageBufferSelfSynchronization  
178 

fcbGetCcMessageBufferSelfSynchronization  180 
fcbReconfigureMessageBufferSelfSynchronization  

179 

fcbReinitializeCcMessageBufferSelfSynchronizatio
n  180 

fcbResetCcMessageBuffersSelfSynchronization  
181 

fcbTransmitSelfSynchronization  181 
STARTUP  81, 210 
Support  28 
SYNC  81, 210 
Termination enumerations 

fcBusChannel  189 
Termination functions 

fcbGetBusTermination  192 
fcbGetBusTerminationCc  190 
fcbSetBusTermination  191 
fcbSetBusTerminationCc  189 

Thread Safety  34 
Tracing  244 
Trigger  183 
Trigger enumerations 

fcTriggerConditionEx  183 
fcTriggerConditionPMC  185 

Trigger functions 
fcbSetTrigger  188 

Trigger structures 
fcTriggerConfigurationEx  186 

VxWorks 
fcbMonitoringStart  213 
fcbMonitoringStop  214 
fcbReceive  215 
fcbSetEventHandle  214 
fcbSetNotificationTypeCount  218 
fcbSetPacketGeneration  217 
fcbSetReceiveMemorySize  217 
fcDrvExit  203 
fcDrvInit  203 
fcFlexRayFrame  209 
fcNotificationType  205 
fcPacket  207 
fcPacketType  207 
fcState  208 
fcTriggerConfigurationEx  204 
fcTriggerExInfoPacket  206 
fcTxAcknowledgePacket  211 
fcVersion  204 
Integration  203 
Not supported functions  213 
Not supported type definitions  203 

Xenomai 
fcbWaitForEventV2  199 
Integration  198 

  



 

 

Created by STAR ELECTRONICS GmbH & Co. KG   

Date created 2021-10-05 Date modified  2021-10-05 Page 250 of 250 
 

3-
00

0
9-

0
S

01
-D

0
3_

A
P

I 
D

oc
um

en
ta

ti
on

_D
2

V
5

-F
.d

oc
x 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

STAR ELECTRONICS GmbH & Co. KG 
A Company of the STAR COOPERATION Group 
Jahnstraße 86 
73037 Göppingen 
Germany 
Phone: +49 (0)7031 6288-5656 
Info@star-cooperation.com 
www.star-cooperation.com/ee-solutions 


	1 General
	1.1 Intended User Group
	1.2 Intended use
	1.3 Used Pictograms
	1.4 Safety and Handling Instructions
	1.5 Meaning of Text Styles

	2 Product Description
	2.1 FlexCard fcBase API at a glance
	2.2 General Function Availability
	2.3 Exceptions for Function Availability
	2.3.1 FlexCard USB-M
	2.3.2 FlexCard PXIe3 and FlexCard PCIe3
	2.3.2.1 FlexDevice Mode
	2.3.2.2 FlexCard Mode
	2.3.2.3 Supported packet types

	2.3.3 FlexDevices
	2.3.3.1 Device Discovery
	2.3.3.2 Required TCP/UDP Ports

	2.3.4 Exclusive access limitiation

	2.4 API Changes From Previous Versions
	2.4.1 From S1V0-F to S2V0-F
	2.4.2 From S2V0-F to S2V2-F
	2.4.3 From S2V2-F to S3V0-F
	2.4.4 From S3V0-F to S4V0-F
	2.4.5 From S4V0-F to S4V2-F
	2.4.6 From S4V2-F to S5V1-F
	2.4.7 From S5V1-F to S6V1-F
	2.4.8 From S6V1-F to S6V2-F
	2.4.9 From S6V2-F to S6V3-F
	2.4.10 From S6V3-F to S6V4-F
	2.4.11 From S6V4-F to S6V5-F
	2.4.12 From S6V5-F to S6V6-F
	2.4.13 From S6V6-F to S6V7-F
	2.4.14 From S6V7-F to S6V8-F

	2.5 Support

	3 Getting Started
	3.1 Installation
	3.2 Integration
	3.2.1 Calling Convention
	3.2.2 Loading the Dll
	3.2.3 Multithreading

	3.3 Basic Workflow
	3.3.1 Setting Up the Project
	3.3.2 Get the Installed FlexCards
	3.3.3 Open a Connection
	3.3.4 FlexRay Configuration behavior FlexCard
	3.3.5 Start and Stop a FlexRay Measurement
	3.3.6 Receive FlexRay Frames
	3.3.7 Transmit FlexRay Frames
	3.3.8 Close a Connection
	3.3.9 Connector/CC Mapping (FlexCard PXIe3 and FlexCard PCIe3)

	3.4 Library compatibility
	3.4.1 Library getter function
	3.4.2 Library setter function


	4 General FlexCard API Description
	4.1 Error Handling
	4.1.1 Type Definitions
	4.1.1.1 fcError

	4.1.2 Enumerations
	4.1.2.1 fcErrorCode
	4.1.2.2 fcErrorType

	4.1.3 fcGetErrorCode
	4.1.4 fcGetErrorType
	4.1.5 fcGetErrorText

	4.2 Memory Handling
	4.2.1 Enumerations
	4.2.1.1 fcMemoryType

	4.2.2 fcFreeMemory

	4.3 Initialization
	4.3.1 Type Definitions
	4.3.1.1 fcHandle
	4.3.1.2 fcByte
	4.3.1.3 fcWord
	4.3.1.4 fcDword
	4.3.1.5 fcQuad
	4.3.1.6 fcBool

	4.3.2 Enumerations
	4.3.2.1 fcBusType
	4.3.2.2 fcCC
	4.3.2.3 fcCCType
	4.3.2.4 fcFlexCardDeviceId
	4.3.2.5 fcTinyType
	4.3.2.6 fcConnector

	4.3.3 Structures
	4.3.3.1 fcNumberCC
	4.3.3.2 fcVersionCC
	4.3.3.3 fcVersionNumber
	4.3.3.4 fcInfoHw
	4.3.3.5 fcInfoSw
	4.3.3.6 fcInfoHwSw
	4.3.3.7 fcTinyInfo
	4.3.3.8 fcTinyInfoCollection

	4.3.4 fcbGetEnumFlexCardsV3
	4.3.5 fcbCheckVersion
	4.3.6 fcbOpen
	4.3.7 fcbClose
	4.3.8 fcbGetInfoFlexCard
	4.3.9 fcbSetUserDefinedCardId
	4.3.10 fcbGetUserDefinedCardId
	4.3.11 fcbGetTinyInfo
	4.3.12 fcbSetGlobalConfig

	4.4 Configuration
	4.4.1 Enumerations
	4.4.1.1 fcTimeStampSourceMode

	4.4.2 Structures
	4.4.2.1 fcTimeStampCfg

	4.4.3 fcbReinitializeCcMessageBuffer
	4.4.4 fcbGetNumberCcs
	4.4.5 fcbSetContinueOnPacketOverflow
	4.4.6 fcbGetCurrentTimeStamp
	4.4.7 fcbResetTimestamp
	4.4.8 fcbConfigureFlexCardTimeStamp
	4.4.9 fcbGetCurrentHighResTimeStamp

	4.5 Event
	4.5.1 Enumerations
	4.5.1.1 fcNotificationType

	4.5.2 fcbSetEventHandleV2
	4.5.3 fcbSetTimer
	4.5.4 fcbNotificationPacket
	4.5.5 fcbSetReceiveBufferLevelNotification

	4.6 Receive
	4.6.1 Typedefinitions
	4.6.1.1 fcInfoPacket
	4.6.1.2 fcFlexRayFrame
	4.6.1.3 fcTxAcknowledgePacket
	4.6.1.4 fcErrPOCErrorModeChangedInfo
	4.6.1.5 fcErrSyncFramesInfo
	4.6.1.6 fcErrClockCorrectionFailureInfo
	4.6.1.7 fcErrSlotInfo
	4.6.1.8 fcErrorPacket
	4.6.1.9 fcStatusWakeupInfo
	4.6.1.10 fcStatusPacket
	4.6.1.11 fcNMVectorPacket
	4.6.1.12 fcNotificationPacket
	4.6.1.13 fcTriggerExInfoPacket
	4.6.1.14 fcCANPacket
	4.6.1.15 fcCANErrorPacket
	4.6.1.16 fcCANFDPacket
	4.6.1.17 fcCANFDErrorPacket
	4.6.1.18 fcEthernetPacket
	4.6.1.19 fcEthernetErrorPacket
	4.6.1.20 fcPacket

	4.6.2 Enumerations
	4.6.2.1 fcPacketType
	4.6.2.2 fcErrorPacketFlag
	4.6.2.3 fcStatusPacketFlag
	4.6.2.4 fcCANErrorType
	4.6.2.5 fcEthernetErrorType

	4.6.3 fcbReceive


	5 FlexRay API
	5.1 Basic FlexRay Workflow
	5.2 Initialization
	5.2.1 Enumerations
	5.2.1.1 fcMonitoringModes
	5.2.1.2 fcState

	5.2.2 fcbFRMonitoringStart
	5.2.3 fcbFRMonitoringStop
	5.2.4 fcbFRGetCcState
	5.2.5 fcbFRSetTransceiverState
	5.2.6 fcbFRGetTransceiverState

	5.3 Configuration
	5.3.1 Constants
	5.3.1.1 fcPayloadMaximum

	5.3.2 Enumerations
	5.3.2.1 fcChannel
	5.3.2.2 fcWakeupStatus
	5.3.2.3 fcTransceiverState
	5.3.2.4 fcFRBaudRate
	5.3.2.5 fcFRMsgBufCfgMode
	5.3.2.6 fcMsgBufType
	5.3.2.7 fcMsgBufTxMode
	5.3.2.8 fcCyclePos

	5.3.3 Structures
	5.3.3.1 fcFRCcConfig
	5.3.3.2 fcMsgBufCfgFifo
	5.3.3.3 fcMsgBufCfgRx
	5.3.3.4 fcMsgBufCfgTx
	5.3.3.5 fcMsgBufCfg
	5.3.3.6 fcCcTimerCfg

	5.3.4 fcbFRSetCcRegister
	5.3.5 fcbFRGetCcRegister
	5.3.6 fcbFRSetCcConfigurationChi
	5.3.7 fcbFRSetCcConfiguration
	5.3.8  fcbFRGetCcConfiguration
	5.3.9 fcbFRSetMsgBufCfgMode
	5.3.10 fcbFRConfigureMessageBuffer
	5.3.11 fcbFRReconfigureMessageBuffer
	5.3.12 fcbFRGetMessageBuffer
	5.3.13 fcbFRResetMessageBuffers
	5.3.14 fcbFRSetSoftwareAcceptanceFilter
	5.3.15 fcbFRSetHardwareAcceptanceFilter
	5.3.15.1 fcEthernetErrorType

	5.3.16 fcbFRSetHardwareTransmitFilter
	5.3.17 fcbFRSetCcTimerConfig
	5.3.18 fcbFRGetCcTimerConfig
	5.3.19 fcbFRCalculateMacrotickOffset

	5.4 Transmit
	5.4.1 Enumerations
	5.4.1.1 fcSymbolType

	5.4.2 fcbFRTransmit
	5.4.3 fcbFRTransmitSymbol


	6 CAN API
	6.1 Basic CAN Workflow
	6.2 Initialization
	6.2.1 Enumerations
	6.2.1.1 fcCANCcState
	6.2.1.2 fcCANMonitoringMode

	6.2.2 fcbCANMonitoringStart
	6.2.3 fcbCANMonitoringStop
	6.2.4 fcbCANGetCcState

	6.3 Configuration
	6.3.1 Enumerations
	6.3.1.1 fcCANBufCfgType
	6.3.1.2 fcCANBufCfgRxAllCondition

	6.3.2 Structures
	6.3.2.1 fcCANBufCfgRxAll
	6.3.2.2 fcCANBufCfgRx
	6.3.2.3 fcCANBufCfgTx
	6.3.2.4 fcCANBufCfgRemoteRx
	6.3.2.5 fcCANBufCfgRemoteTx
	6.3.2.6 fcCANBufCfg
	6.3.2.7 fcCANCcConfig
	6.3.2.8 fcCANTxFifoConfig

	6.3.3 fcbCANSetCcConfiguration
	6.3.4 fcbCANSetMessageBuffer
	6.3.5 fcbCANGetMessageBuffer
	6.3.6 fcbCANSetTxFifoConfiguration
	6.3.7 fcbCANGetTxFifoConfiguration
	6.3.8 fcbCANTxFifoReset
	6.3.9 fcbCANSetFilterConfiguration

	6.4 Transmit
	6.4.1 fcbCANTransmit
	6.4.2 fcbCANTxFifoTransmit


	7 CAN-FD API
	7.1 Basic CAN-FD Workflow
	7.2 CAN-FD DLC
	7.3 Configuration
	7.3.1 Enumerations
	7.3.1.1 fcCANFDFrameFormat

	7.3.2 Structures
	7.3.2.1 fcCANCcBitTime
	7.3.2.2 fcCANFDCcConfig

	7.3.3 fcbCANFDSetCcConfiguration
	7.3.4 fcbCANSetFilterConfiguration

	7.4 Transmit
	7.4.1 Structures
	7.4.1.1 fcCANFDTxFrame

	7.4.2 fcbCANFDTransmit


	8 Ethernet API
	8.1 Initialization
	8.1.1 Enumerations
	8.1.1.1 fcEthMonitoringMode

	8.1.2 fcbEthMonitoringStart
	8.1.3 fcbEthMonitoringStop

	8.2 Configuration
	8.2.1 Enumerations
	8.2.1.1 fcEthMode

	8.2.2 Structures
	8.2.2.1 fcEthCcConfig
	8.2.2.2 fcEthFilterConfig

	8.2.3 fcbEthSetCcConfiguration
	8.2.4 fcbEthSetFilterConfiguration

	8.3 Transmit
	8.3.1 fcbEthTransmit


	9 Self Synchronization API
	9.1 Configuration
	9.1.1 fcbConfigureMessageBufferSelfSynchronization
	9.1.2 fcbReconfigureMessageBufferSelfSynchronization
	9.1.3 fcbReinitializeCcMessageBufferSelfSynchronization
	9.1.4 fcbGetCcMessageBufferSelfSynchronization
	9.1.5 fcbResetCcMessageBuffersSelfSynchronization

	9.2 Transmit
	9.2.1 fcbTransmitSelfSynchronization


	10 Trigger API
	10.1 Enumerations
	10.1.1 fcTriggerConditionEx
	10.1.2 fcTriggerConditionPMC

	10.2 Structures
	10.2.1 fcTriggerConfigurationEx

	10.3 fcbSetTrigger

	11 Termination API
	11.1 Enumerations
	11.1.1 fcBusChannel

	11.2 fcbSetBusTerminationCc
	11.3 fcbGetBusTerminationCc
	11.4 fcbSetBusTermination
	11.5 fcbGetBusTermination

	12 Firmware API
	12.1 Structures
	12.1.1 fcFWInfo

	12.2 fcbFWGetImageInfo
	12.3 fcbFWSelectImage

	13 Additional Linux API
	13.1 Integration
	13.2 Event
	13.2.1 fcbSetEventHandleSemaphore


	14 Additional Xenomai API
	14.1 Integration
	14.2 Structures
	14.2.1 fcFROffsetSynchronization

	14.3 Event
	14.3.1 fcbWaitForEventV2

	14.4 Initialization
	14.4.1 fcbFRSetOffsetSynchronization

	14.5 Obsolete
	14.5.1 fcbWaitForEvent (Obsolete)


	15 Additional VxWorks API
	15.1 Integration
	15.1.1 fcDrvInit
	15.1.2 fcDrvExit

	15.2 Restrictions / Changes
	15.2.1 Not Supported Type Definitions
	15.2.2 Changed Type Definitions
	15.2.2.1 fcVersion
	15.2.2.2 fcTriggerConfigurationEx
	15.2.2.3 fcNotificationType
	15.2.2.4 fcTriggerExInfoPacket
	15.2.2.5 fcPacketType
	15.2.2.6 fcPacket
	15.2.2.7 fcState
	15.2.2.8 fcFlexRayFrame
	15.2.2.9 fcTxAcknowledgePacket

	15.2.3 Not Supported Functions
	15.2.4 Changed Functions
	15.2.4.1 fcbMonitoringStart
	15.2.4.2 fcbMonitoringStop
	15.2.4.3 fcbSetEventHandle
	15.2.4.4 fcbReceive


	15.3 Configuration
	15.3.1 fcbSetPacketGeneration
	15.3.2 fcbSetReceiveMemorySize

	15.4 Event
	15.4.1 fcbSetNotificationTypeCount


	16 Obsolete
	16.1 fcInfo (Obsolete)
	16.2 fcInfoV2 (Obsolete)
	16.3 fcVersion (Obsolete)
	16.4 fcbGetEnumFlexCards (Obsolete)
	16.5 fcbGetEnumFlexCardsV2 (Obsolete)
	16.6 fcbMonitoringStart (Obsolete)
	16.7 fcbMonitoringStop (Obsolete)
	16.8 fcbGetCcState (Obsolete)
	16.9 fcbSetTransceiverState (Obsolete)
	16.10 fcbGetTransceiverState (Obsolete)
	16.11 fcbSetEventHandle (Obsolete)
	16.12 fcbTransmit (Obsolete)
	16.13 fcbTransmitSymbol (Obsolete)
	16.14 fcbSetCcRegister (Obsolete)
	16.15 fcbGetCcRegister (Obsolete)
	16.16 fcbChiCcConfiguration (Obsolete)
	16.17 fcbCanDbCcConfiguration (Obsolete)
	16.18 fcbConfigureMessageBuffer (Obsolete)
	16.19 fcbReconfigureMessageBuffer (Obsolete)
	16.20 fcbGetCcMessageBuffer (Obsolete)
	16.21 fcbResetCcMessageBuffer (Obsolete)
	16.22 fcbFilter (Obsolete)
	16.23 fcbSetCcTimerConfig (Obsolete)
	16.24 fcbGetCcTimerConfig (Obsolete)
	16.25 fcbCalculateMacrotickOffset (Obsolete)
	16.25.1 Trigger Configuration (Obsolete)

	16.26 Typedefinitions (Obsolete)
	16.26.1 fcTriggerCfgHardware (Obsolete)
	16.26.2 fcTriggerCfgSoftware (Obsolete)
	16.26.3 fcTriggerCfg (Obsolete)
	16.26.4 fcTriggerInfoPacket (Obsolete)

	16.27 Enumerations (Obsolete)
	16.27.1 fcTriggerCondition (Obsolete)
	16.27.2 fcTriggerType (Obsolete)
	16.27.3 fcTriggerMode (Obsolete)

	16.28 fcbTrigger (Obsolete)
	16.29 fcbSetCcIndex (Obsolete)
	16.30 fcbGetCcIndex (Obsolete)
	16.31 fcbFRSetCcConfigurationCANdb (Obsolete)

	17 Power Management
	17.1 Windows
	17.2 Linux

	18 Tracing
	18.1 Overview
	18.2 Limitation

	19 Appendix
	19.1 Bibliography
	19.2 Abbreviations
	19.3 Glossary
	19.4 List of Figures
	19.5 Index




